|
1.Kjerulff, K.H., B.A. Erickson, and P.W. Langenberg, Chronic gynecological conditions reported by US women: findings from the National Health Interview Survey, 1984 to 1992. Am J Public Health, 1996. 86(2): p. 195-9. 2.Vinatier, D., et al., Theories of endometriosis. Eur J Obstet Gynecol Reprod Biol, 2001. 96(1): p. 21-34. 3.Leyendecker, G., et al., Endometriosis results from the dislocation of basal endometrium. Hum Reprod, 2002. 17(10): p. 2725-36. 4.Olive, D.L. and L.B. Schwartz, Endometriosis.N Engl J Med, 1993. 328(24):p. 1759-69. 5.Geist, S.H., The viability of fragments of menstrual endometrium. Am J Obstet Gynecol,1933. 25: p. 751. 6.Novak, E., The significance of uterine mucosa in the fallopian tube, with a discussion of the origin of aberrant endometrium. Am J Obstet Gynecol, 1926.12: p. 484-526. 7.CH Syrop, J.H., Peritoneal fluid environment and infertility. Fertil Steril,1987. 48: p. 1-9. 8.Levander, G. and P. Normann, The pathogenesis of endometriosis; an experimental study. Acta Obstet Gynecol Scand, 1955. 34(4): p. 366-98. 9.Vernon, M.W. and E.A. Wilson, Studies on the surgical induction of endometriosis in the rat. Fertil Steril, 1985. 44(5): p. 684-94. 10.Braun, D.P., et al., The development of cytotoxicity in peritoneal macrophages from women with endometriosis. Fertil Steril, 1992. 57(6): p.1203-10. 11.Oosterlynck, D.J., et al., Women with endometriosis show a defect in natural killer activity resulting in a decreased cytotoxicity to autologous endometrium. Fertil Steril, 1991. 56(1): p. 45-51. 12.Badawy, S.Z., et al., Autoimmune phenomena in infertile patients with endometriosis. Obstet Gynecol, 1984. 63(3): p. 271-5. 13.Karck, U., et al., PGE2 and PGF2 alpha release by human peritoneal macrophages in endometriosis. Prostaglandins, 1996. 51(1): p.49-60. 14.Koninckx, P.R., S.H. Kennedy, and D.H. Barlow, Endometriotic disease: the role of peritoneal fluid. Hum Reprod Update, 1998. 4(5): p. 741-51. 15.Berkkanoglu, M. and A. Arici, Immunology and endometriosis. Am J Reprod Immunol, 2003. 50(1): p. 48-59. 16.Iwabe, T., et al., Pathogenetic significance of increased levels of interleukin-8 in the peritoneal fluid of patients with endometriosis. Fertil Steril, 1998. 69(5): p. 924-30. 17.Arici, A., et al., Interleukin-8 induces proliferation of endometrial stromal cells: a potential autocrine growth factor. J Clin crinol Metab, 1998. 83(4): p. 1201-5. 18.Mulayim, N., et al., Regulation of endometrial stromal cell matrix etalloproteinase activity and invasiveness by interleukin-8. Frtil Steril,2004. 81 Suppl 1: p. 904-11. 19.Boucher, A., et al., Ovarian hormones modulate monocyte chemotactic protein-1 expression in endometrial cells of women with endometriosis. Mol Hum Reprod, 2000. 6(7): p. 618-26. 20.De Leon, F.D., et al., Peritoneal fluid volume, estrogen, progesterone, prostaglandin, and epidermal growth factor concentrations in patients with and without endometriosis. Obstet Gynecol, 1986. 68(2): p. 189-94. 21.Bulun, S.E., et al., Estrogen production in endometriosis and use of aromatase inhibitors to treat endometriosis. Endocr Relat Cancer, 1999. 6 (2): p. 293-301. 22.Simpson, E.R., et al., Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev, 1994. 15(3): p. 342-55. 23.Noble, L.S., et al., Aromatase expression in endometriosis. J Clin Endocrinol Metab, 1996. 81(1): p. 174-9. 24.Kitawaki, J., et al., Expression of aromatase cytochrome P450 protein and messenger ribonucleic acid in human endometriotic and adenomyotic tissues but not in normal endometrium. Biol Reprod, 1997. 57(3): p. 514-9. 25.Kitawaki, J., et al., Detection of aromatase cytochrome P-450 in endometrial biopsy specimens as a diagnostic test for endometriosis. Fertil Steril, 1999. 72(6): p. 1100-6. 26.Bulun, S.E., et al., Estrogen biosynthesis in endometriosis: molecular basis and clinical relevance. J Mol Endocrinol, 2000. 25(1): p. 35-42. 27.Tsai, S.J., et al., Regulation of steroidogenic acute regulatory protein expression and progesterone production in endometriotic stromal cells. J Clin Endocrinol Metab, 2001. 86(12): p. 5765-73. 28.O'Neill, G.P. and A.W. Ford-Hutchinson, Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett, 1993. 330 (2): p. 156-60. 29.Wu, M.H., et al., Distinct regulation of cyclooxygenase-2 by interleukin-1beta in normal and endometriotic stromal cells. J Clin Endocrinol Metab, 2005. 90(1): p. 286-95. 30.Ihle, J.N., The Stat family in cytokine signaling. Curr Opin Cell Biol, 2001. 13(2): p. 211-7. 31.Mirkovitch, J., T. Decker, and J.E. Darnell, Jr., Interferon induction of gene transcription analyzed by in vivo footprinting. Mol Cell Biol, 1992. 12(1): p. 1-9. 32.Leung, K.C., Regulation of cytokine receptor signaling by nuclear hormone receptors: a new paradigm for receptor interaction. DNA Cell Biol, 2004. 23(8): p. 463-74. 33.Durbin, J.E., et al., Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell, 1996. 84(3): p. 443-50. 34.Meraz, M.A., et al., Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell, 1996. 84(3): p. 431-42. 35.Park, C., et al., Immune response in Stat2 knockout mice. Immunity, 2000. 13(6): p. 795-804. 36.Takeda, K., et al., Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A, 1997. 94(8): p. 3801-4. 37.Kisseleva, T., et al., Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene, 2002. 285(1-2): p. 1-24. 38.Kaplan, M.H., et al., Impaired IL-12 esponses and enhanced development of Th2 cells in Stat4-deficient mice. Nature, 1996. 382(6587): p. 174-7. 39.Liu, X., et al., Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev, 1997. 11(2): p. 179-86. 40.Udy, G.B., et al., Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A, 1997. 94(14): p. 7239-44. 41.Teglund, S., et al., Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell, 1998. 93(5): p. 841-50. 42.Shimoda, K., et al., Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature, 1996. 380(6575): p. 630-3. 43.Pranada, A.L., et al., Real time analysis of STAT3 nucleocytoplasmic shuttling. J Biol Chem, 2004. 279(15): p. 15114-23. 44.Zeng, R., et al., Stat5B shuttles between cytoplasm and nucleus in a cytokine-dependent and -independent manner. J Immunol, 2002. 168(9): p. 4567-75. 45.Meyer, T., et al., Constitutive and IFN-gamma-induced nuclear import of STAT1 proceed through independent pathways. Embo J, 2002. 21(3): p. 344-54. 46.Marg, A., et al., Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1. J Cell Biol, 2004. 165(6): p. 823-33. 47.Mitchell, T.J. and S. John, Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology, 2005. 114(3): p. 301-312. 48.Maritano, D., et al., The STAT3 isoforms alpha and beta have unique and specific functions. Nat Immunol, 2004. 5(4): p. 401-9. 49.Chakraborty, A. and D.J. Tweardy, Granulocyte colony-stimulating factor activates a 72-kDa isoform of STAT3 in human neutrophils. J Leukoc Biol, 1998. 64(5): p. 675-80. 50.Epling-Burnette, P.K., et al., Carboxy-terminal truncated STAT5 is induced by interleukin-2 and GM-CSF in human neutrophils. Cell Immunol, 2002. 217(1-2): p. 1-11. 51.Suzuki, K., et al., Proteolytic processing of Stat6 signaling in mast cells as a negative regulatory mechanism. J Exp Med, 2002. 196(1): p. 27-38. 52.Azam, M., et al., Functionally distinct isoforms of STAT5 are generated by protein processing. Immunity, 1997. 6(6): p. 691-701. 53.Piazza, F., et al., Myeloid differentiation of FdCP1 cells is dependent on Stat5 processing. Blood, 2000. 96(4): p. 1358-65. 54.Oda, A., H. Wakao, and H. Fujita, Calpain is a signal transducer and activator of transcription (STAT) 3 and STAT5 protease. Blood, 2002. 99(5):p. 1850-2. 55.Paulson, M., et al., Stat protein transactivation domains recruit p300/CBP through widely divergent sequences. J Biol Chem, 1999. 274(36): p. 25343-9. 56.Nusinzon, I. and C.M. Horvath, Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc Natl Acad Sci U S A, 2003. 100(25): p. 14742-7. 57.Klampfer, L., et al., Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem, 2004. 279(29): p. 30358-68. 58.Rascle, A., J.A. Johnston, and B. Amati, Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5. Mol Cell Biol, 2003. 23(12): p. 4162-73. 59.Giraud, S., et al., Implication of BRG1 and cdk9 in the STAT3-mediated activation of the p21waf1 gene. Oncogene, 2004. 23(44): p. 7391-8. 60.Chughtai, N., et al., Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells. J Biol Chem, 2002. 277(34): p. 31107-14. 61.ten Hoeve, J., et al., Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol, 2002. 22(16): p. 5662-8. 62.Ungureanu, D., et al., PIAS proteins promote SUMO-1 conjugation to STAT1. Blood, 2003. 102(9): p. 3311-3. 63.Arora, T., et al., PIASx is a transcriptional co-repressor of signal transducer and activator of transcription 4. J Biol Chem, 2003. 278(24): p.21327-30. 64.Alexander, W.S. and D.J. Hilton, The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol, 2004. 22: p. 503-29. 65.Zhang, J.G., et al., The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci U S A, 1999. 96(5): p. 2071-6. 66.Kamizono, S., et al., The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem, 2001. 276(16): p. 12530-8. 67.Gu, F., et al., Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling. Mol Cell Biol, 2003. 23(11): p. 3753-62. 68.Yamaoka, K., et al., Selective DNA-binding activity of interleukin-10-stimulated STAT molecules in human monocytes. J Interferon Cytokine Res, 1999. 19(6): p. 679-85. 69.Leung, K.C., et al., Estrogen inhibits GH signaling by suppressing GH-induced JAK2 phosphorylation, an effect mediated by SOCS-2. Proc Natl Acad Sci U S A, 2003. 100(3): p. 1016-21. 70.Bjornstrom, L., et al., Cross-talk between Stat5b and estrogen receptor-alpha and -beta in mammary epithelial cells. J Mol Endocrinol,2001. 27(1): p. 93-106. 71.Faulds, M.H., et al., Cross-talk between ERs and signal transducer and activator of transcription 5 is E2 dependent and involves two functionally separate mechanisms. Mol Endocrinol, 2001. 15(11): p. 1929-40. 72.Zhang, Z., et al., STAT3 acts as a co-activator of glucocorticoid receptor signaling. J Biol Chem, 1997. 272(49): p. 30607-10. 73.Matsuda, T., et al., Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells. Biochem Biophys Res Commun, 2001. 283(1): p. 179-87. 74.Yamamoto, T., et al., Cross-talk between signal transducer and activator of transcription 3 and estrogen receptor signaling. FEBS Lett, 2000. 486(2): p. 143-8. 75.Ryan, I.P., E.D. Schriock, and R.N. Taylor, Isolation, characterization, and comparison of human endometrial and endometriosis cells in vitro. J Clin Endocrinol Metab, 1994. 78(3): p. 642-9. 76.Yamaoka, K., et al., Activation of STAT5 by lipopolysaccharide through granulocyte-macrophage colony-stimulating factor production in human monocytes. J Immunol, 1998. 160(2): p. 838-45. 77.Bolli, R., B. Dawn, and Y.T. Xuan, Role of the JAK-STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends Cardiovasc Med, 2003. 13(2): p. 72-9. 78.Xuan, Y.T., et al., Role of the protein kinase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation, 2005. 112(13): p. 1971-8. 79.Koon, H.W., et al., Substance P stimulates cycloxygenase-2 and prostaglandin E2 expression through JAK-STAT activation in human colonic epithelial cells. J Immunol, 2006. 176(8): p. 5050-9. 80.Ng, D.C., C.S. Long, and M.A. Bogoyevitch, A role for the extracellular signal-regulated kinase and p38 mitogen-activated protein kinases in interleukin-1 beta-stimulated delayed signal tranducer and activator of transcription 3 activation, atrial natriuretic factor expression, and cardiac myocyte morphology. J Biol Chem, 2001. 276(31): p. 29490-8. 81.Park, J.I., et al., Interleukin-1beta can mediate growth arrest and differentiation via the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. Cytokine, 2005. 29(3): p. 125-34. 82.Costa-Pereira, A.P., et al., Mutational switch of an IL-6 response to an interferon-gamma-like response. Proc Natl Acad Sci U S A, 2002. 99(12): p.8043-7. 83.Qing, Y. and G.R. Stark, Alternative activation of STAT1 and STAT3 in response to interferon-gamma. J Biol Chem, 2004. 279(40): p. 41679-85. 84.Kang, Y.J., et al., Cyclooxygenase-2 gene transcription in a macrophage model of inflammation. J Immunol, 2006. 177(11): p. 8111-22.
|