跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:董昭伶
研究生(外文):Chao-ling Tung
論文名稱:以Zta蛋白質誘導轉活化的細胞來探討全基因體的甲基化情形
論文名稱(外文):Whole genome analysis of methylation level in Zta-induced reactivation cells
指導教授:孫孝芳孫孝芳引用關係
指導教授(外文):Hsiao-Fang Sunny Sun
學位類別:碩士
校院名稱:國立成功大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:64
中文關鍵詞:甲基化Zta蛋白質
外文關鍵詞:EBVZtamethylation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
Epstein-Barr 病毒(EB 病毒)是一種γ皰疹病毒,超過90%人口都被傳染,而且EB病毒和許多淋巴性或皮膚性惡性腫瘤有密切的相關性。EB病毒從潛伏期轉活化的過程中,兩個即刻性早期的病毒促進者Zp和Rp,分別轉錄出Zta和Rta蛋白質,扮演重要的角色。先前的文獻指出,在潛伏期感染細胞中,EB病毒的基因是被高度甲基化的,且Zta蛋白質這個使EB病毒進入溶裂期的重要轉活化因子,會優先地結合到甲基化的病毒基因上進而活化此基因的表現。目前為止,在EB病毒的基因中已經發現很多Zta蛋白質的標地基因。而在EB病毒轉活化的過程中,宿主細胞中也發現到很多的基因表現量產生變化,但是否這些變化與Zta蛋白質調節的標地基因表現機制有關目前仍未知。先前報導中發現,宿主基因體中的一個轉譯因子,早期生長反應因子-1 (Egr-1),可能是Zta的一個標地基因。Egr-1在受到化學藥物的刺激而走向轉活化的鼻咽癌惡性腫瘤細胞中,表現量會上升。且報導中也證實了Egr-1的啟動序列上有Zta蛋白質結合的位置 (ZRE),因此,可以結合在Egr-1的啟動序列上,來調控Egr-1表現。由於Zta蛋白質結合的位置剛好座落在一段CpG群聚上,我們假設甲基化的修飾,在Zta大量表現的轉活化細胞中扮演一個重要的角色,極可能以改變Egr-1基因上啟動子區域的甲基化程度,來讓Zta蛋白質結合到此區域上,進而活化Egr-1表現。此次研究,我們利用Zta蛋白質大量表現的細胞模式來探討轉活化細胞中基因體甲基化改變的情形。為了檢驗宿主細胞中整體甲基化的狀態,我們分別利用人類雄性素接受器基因法去分析X染色體上不活化的情形,南方墨點轉漬法去分析基因體裡重複序列的甲基化程度,也利用即時定量PCR方法來分析控制印記基因IGF2/H19表現的區域上的甲基化情形,更利用高解析毛細電泳去定量出在基因體中有甲基的胞嘧啶的比例。在探討宿主基因體甲基化程度相關蛋白質的表現方面,我們利用了西方墨點漬法分析去氧核醣核酸甲基轉移酶的表現量,其中包含了有去氧核醣核酸甲基轉移酶1、3a及3b。此外,我們也以Egr-1這個Zta的標地基因去分析其啟動子上CpG群聚的甲基化情形。由結果發現,在Zta大量表現和沒有Zta表現的細胞中,不活化的X染色體似乎是選擇性的發生在特定的某一條X染色體上。但是在這兩株細胞中, X染色體上不活化的程度並沒有差異。在重複序列包括LINE-1、SINE-Alu和α-satellite,印記基因IGF2/H19上的甲基化程度,以及全基因體帶有甲基的胞嘧啶的比例,在Zta大量表現和沒有Zta表現的細胞中情形都是很相似的。除此之外,我們的結果也指出在Zta大量表現和沒有Zta表現的細胞裡, Egr-1啟動序列上的CpG群聚都沒有受到甲基化的保護。顯示Zta應是在大量表現後,藉著與Egr-1啟動子上的ZRE結合來調節Egr-1基因表現。由這些結果顯示在轉活化細胞中,Zta大量表現並不會改變宿主基因體甲基化的狀態。
Epstein-Barr virus, a γ herpesvirus, that infects more than 90% of the human population and closely associated with several lymphoid and epithelial malignancies. EBV reactivation from latent infection is initiated by activation of two immediate-early viral promoters, Zp and Rp, which encode BZLF1 (Zta) and BRLF1 (Rta) proteins, respectively. The EBV genome is highly methylated in latently infected cells. The Zta is a key lytic transactivator that preferentially binds to the methylated viral genome and activates lytic viral gene expression. While many targets of Zta have been identified in the EBV genome, expressions of a number of cellular genes were also shown to be regulated during EBV reactivation. But the underlying mechanism of Zta-induced transactivation on target genes expression are still unknown. One of these cellular genes, early growth response-1 (Egr-1), has been showed to be upregulated in EBV-infected nasopharyngeal carcinoma cell line that was treated by chemicals to induce reactivation. Further investigation identified Zta responsive element (ZRE) on Egr-1 promoter that are responsible for the induction of Egr-1 expression. We have found that ZRE on Egr-1 promoter was also located within a CpG island. We hypothesize that the methylation play a role in regulation of target gene expression in Zta overexpressed cells. The current study applied Zta-overexpressed cellular model to investigate the significance of altered genomic methylation upon EBV reactivation. We have employed several advanced technologies to assay the global methylation status in the host genome. These include the human androgen receptor (HUMARA) assay for X-chromosome inactivation, Southern blot analysis against genome repetitive sequences, and methylation-sensitive quantification real-time PCR to examine methylation status of imprinting control region (ICR) of the IGF2/H19 imprinting genes. In addition, we performed high performance capillary electrophoresis (HPCE) to measure the methyl-cytosine level in the cells. The expressions of methylation-related proteins were assayed by Western blot analysis using antibodies against human DNA methyltransferase 1 (DNMT1), DNMT3a, DNMT3b and LINE-1 ORFs. Finally, the Egr-1 promoter, as one example of Zta-targeted cellular gene, was also investigated by methylation-sensititive real-time PCR. Our data indicated in both Zta+ and Zta- cells, the patterns of inactivated X-chromosome were skewed X-chromosome inactivation. The methylation status of inactivated X-chromosome was not different in Zta+ and Zta- cells. The methylation level of the repetitive elements (LINE, SINE-Alu and α-satellite), methyl-cytosine level and imprinted gene, IGF2/H19, were similar between these two cells. Expressions of methylation-related proteins were also not changed by Zta expression. In addition, our data indicated that the CpG island of Egr-1 promoter is not protected by methylation in Zta+ and Zta- cells. Thus it suggests that Zta might bind to the ZRE on the Egr-1 promoter to regulate the gene expression in Zta-overexpressed cells. Theses results suggest the global methylation pattern in the host genome is not changed upon reactivation.
ABSTRACT IN CHINESE ……………………………………....Ι
ABSTRACT IN ENGLISH …………………………………….IV
ACKNOWLEDGEMENT ……………………………………ⅤI
TABLE OF CONTENTS …………………………………..VIII
LIST OF TABLES …………………………………………...XII
LIST OF FIGURES …………………………………………..XIII

1 INTRODUCTION ………………………………………………..1
1.1 EPIGENTIC MODIFICATION …………………………………..1
1.1.1 DNA methylation ……………………………………………1
1.1.2 Histone modification ……………………………………….4
1.1.3 RNA-mediated regulation …………………………………..6
1.2 THE EPSTEIN-BARR VIRUS …………………………………..7
1.2.1 The EBV genome ……………………………………………8
1.2.2 Life cycle of EBV infection …………………………………..8
1.2.3 EBV reactivation …………………………………………..10
1.2.4 EBV hypermethylated genome to escape host immune system ……………………………………………………………..11
1.3 EBV TRANSACTIVATOR, ZTA …………………………………12
1.3.1 Molecular properties of Zta protein ………………………...12
1.3.2 Zta overexpression …………………………………………..14
1.4 EGR-1 FUNCTION UNDER EBV INFECTION ……………….15
1.5 RESEARCH OBJECTIVES OF THIS STUDY ……………………15
2 MATERIAL AND METHODS …………………………………17
2.1 Cell line ……………………………………………………………..17
2.2 DNA extraction ……………………………………………………17
2.3 Human androgen receptor assay (HUMARA) ……………………18
2.3.1 Subjects and Sample Preparations ………………………...19
2.3.1.1 Genomic DNA digestion ……………………………..19
2.3.1.2 Purification from DNA digestion ……………………19
2.3.2 Polymerase Chain Reaction …………………………………20
2.4 Southern Blotting ……………………………………………….20
2.4.1 Genomic DNA digestion …………………………………20
2.4.2 Gel electrophoresis of the restricted DNA ……………….21
2.4.3 Transfer ……………………………………………………21
2.4.4 Probe preparation …………………………………………..22
2.4.5 Hybridization ……………………………………………….23
2.4.6 Detection ……………………………………………………24
2.5 Preparation of nuclear extracts …………………………………24
2.6 Protein concentration determination ……………………………..25
2.7 Western blotting ……………………………………………………26
2.7.1 Gel electrophoresis …………………………………………..26
2.7.2 Transfer ……………………………………………………26
2.7.3 Hybridization ……………………………………………….27
2.7.3.1 Hybridization against DNMT1 and DNMT3a ……...27
2.7.3.2 Hybridization against DNMT3b ……………………27
2.7.3.3 Hybridization against LINE-1 ORF1 ……………….28
2.7.3.4 Hybridization against PCNA ……………………28
2.7.3.5 Hybridization against Pan-actin ……………………28
2.7.4 Detection ……………………………………………………29
2.8 Methylation-sensitive quantitative real-time PCR ……………….29
2.8.1 Subjects and sample preparations ………………………...29
2.8.1.1 Genomic DNA digestion ………………………...29
2.8.1.2 Purification from DNA digestion ……………………29
2.8.2 Quantitative real-time PCR …………………………………30
2.8.3 Relative quantitation method ……………………………..31
2.8.4 Validating relative efficiency of target and reference ……...32
2.9 High performance capillary electrophoresis (HPCE) …………..32
2.9.1 Subjects and sample preparation ……………………………..32
2.9.1.1 Standards …………………………………………..32
2.9.1.2 Genomic DNA hydrolysis ………………………...33
2.9.2 High performance capillary electrophoresis ……………….33
2.10 Statistical analysis …………………………………………..33
3 RESULT ……………………………………………………………..35
3.1 The global methylation level in Zta overexpressed cells …………..35
3.1.1 The DNA methylation status of inactivative X chromosome ……………………………………………………………..35
3.1.2 The global DNA methylation level of repetitive elements in Zta overexpressed cells …………………………………………..36
3.1.3 The DNA methylation level of imprinted genes …………..37
3.1.4 The level of methyl-cytosine ……………………………..38
3.2 The expression level of methyltion-related proteins …………..39
3.2.1 The expression level of DNA methyltransferases …………..39
3.2.2 The expression of LINE-1 ORFs ………………………...40
3.3 The methylation status of Egr-1 promoter region ……………….40
4 DISCUSSION ………………………………………………………...42
4.1 The Zta-responsive cellular genes in the host cells ……………….42
4.2 The pattern of X chromosome inactivation in human genome …43
4.3 The methylation status of the imprinted gene in host genome ....45
4.4 The limitation of methylation-sensitive real-time PCR …………..46
4.5 The expression of LINE-1 ORFs in Zta+ and Zta- cells …………..46
4.6 The possible mechanism of Zta induce Egr-1 expression ……...47
4.7 Conclusion ………………………………………………………. 49
Aapola, U., K. Kawasaki, et al. (2000). "Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family." Genomics 65(3): 293-8.
Abkowitz, J. L., M. Taboada, et al. (1998). "An X chromosome gene regulates hematopoietic stem cell kinetics." Proc Natl Acad Sci U S A 95(7): 3862-6.
Almeida, R. and R. C. Allshire (2005). "RNA silencing and genome regulation." Trends Cell Biol 15(5): 251-8.
Ambinder, R. F., K. D. Robertson, et al. (1999). "DNA methylation and the Epstein-Barr virus." Semin Cancer Biol 9(5): 369-75.
Bartel, D. P. (2004). "MicroRNAs: genomics, biogenesis, mechanism, and function." Cell 116(2): 281-97.
Bartolomei, M. S., S. Zemel, et al. (1991). "Parental imprinting of the mouse H19 gene." Nature 351(6322): 153-5.
Beever, C. L., M. D. Stephenson, et al. (2003). "Skewed X-chromosome inactivation is associated with trisomy in women ascertained on the basis of recurrent spontaneous abortion or chromosomally abnormal pregnancies." Am J Hum Genet 72(2): 399-407.
Bernstein, B. E., A. Meissner, et al. (2007). "The Mammalian epigenome." Cell 128(4): 669-81.
Bestor, T. H. (2000). "The DNA methyltransferases of mammals." Hum Mol Genet 9(16): 2395-402.
Bhende, P. M., W. T. Seaman, et al. (2004). "The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome." Nat Genet 36(10): 1099-104.
Cayrol, C. and E. K. Flemington (1995). "Identification of cellular target genes of the Epstein-Barr virus transactivator Zta: activation of transforming growth factor beta igh3 (TGF-beta igh3) and TGF-beta 1." J Virol 69(7): 4206-12.
Chang, Y., H. H. Lee, et al. (2006). "Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta." J Virol 80(15): 7748-55.
Chang, Y. N., D. L. Dong, et al. (1990). "The Epstein-Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif." J Virol 64(7): 3358-69.
Christensen, K., M. Kristiansen, et al. (2000). "X-linked genetic factors regulate hematopoietic stem-cell kinetics in females." Blood 95(7): 2449-51.
Dean, W., D. Lucifero, et al. (2005). "DNA methylation in mammalian development and disease." Birth Defects Res C Embryo Today 75(2): 98-111.
DeChiara, T. M., A. Efstratiadis, et al. (1990). "A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting." Nature 345(6270): 78-80.
Eads, C. A., K. D. Danenberg, et al. (2000). "MethyLight: a high-throughput assay to measure DNA methylation." Nucleic Acids Res 28(8): E32.
Eberharter, A. and P. B. Becker (2002). "Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics." EMBO Rep 3(3): 224-9.
Egger, G., G. Liang, et al. (2004). "Epigenetics in human disease and prospects for epigenetic therapy." Nature 429(6990): 457-63.
El-Osta, A. (2003). "DNMT cooperativity--the developing links between methylation, chromatin structure and cancer." Bioessays 25(11): 1071-84.
Esteller, M. (2006). "The necessity of a human epigenome project." Carcinogenesis 27(6): 1121-5.
Fischle, W., Y. Wang, et al. (2003). "Histone and chromatin cross-talk." Curr Opin Cell Biol 15(2): 172-83.
Flemington, E. and S. H. Speck (1990). "Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1." J Virol 64(3): 1227-32.
Flemington, E. and S. H. Speck (1990). "Epstein-Barr virus BZLF1 trans activator induces the promoter of a cellular cognate gene, c-fos." J Virol 64(9): 4549-52.
Flemington, E. K., A. E. Goldfeld, et al. (1991). "Efficient transcription of the Epstein-Barr virus immediate-early BZLF1 and BRLF1 genes requires protein synthesis." J Virol 65(12): 7073-7.
Fraga, M. F., R. Rodriguez, et al. (2000). "Rapid quantification of DNA methylation by high performance capillary electrophoresis." Electrophoresis 21(14): 2990-4.
Gale, R. E., A. K. Fielding, et al. (1997). "Acquired skewing of X-chromosome inactivation patterns in myeloid cells of the elderly suggests stochastic clonal loss with age." Br J Haematol 98(3): 512-9.
Gille, H., M. Kortenjann, et al. (1995). "ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation." Embo J 14(5): 951-62.
Goll, M. G. and T. H. Bestor (2005). "Eukaryotic cytosine methyltransferases." Annu Rev Biochem 74: 481-514.
Goto, T. and M. Monk (1998). "Regulation of X-chromosome inactivation in development in mice and humans." Microbiol Mol Biol Rev 62(2): 362-78.
Hall, I. M., G. D. Shankaranarayana, et al. (2002). "Establishment and maintenance of a heterochromatin domain." Science 297(5590): 2232-7.
Hatakeyama, C., C. L. Anderson, et al. (2004). "The dynamics of X-inactivation skewing as women age." Clin Genet 66(4): 327-32.
Hodge, C., J. Liao, et al. (1998). "Growth hormone stimulates phosphorylation and activation of elk-1 and expression of c-fos, egr-1, and junB through activation of extracellular signal-regulated kinases 1 and 2." J Biol Chem 273(47): 31327-36.
Hong, G. K., H. J. Delecluse, et al. (2004). "The BRRF1 early gene of Epstein-Barr virus encodes a transcription factor that enhances induction of lytic infection by BRLF1." J Virol 78(10): 4983-92.
Jaenisch, R. and A. Bird (2003). "Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals." Nat Genet 33 Suppl: 245-54.
Jovanovic, L., B. Delahunt, et al. (2003). "Optimising restriction enzyme cleavage of DNA derived from archival histopathological samples: an improved HUMARA assay." Pathology 35(1): 70-4.
Karasawa, M., N. Tsukamoto, et al. (2001). "Analysis of the distribution of CAG repeats and X-chromosome inactivation status of HUMARA gene in healthy female subjects using improved fluorescence-based assay." Int J Hematol 74(3): 281-6.
Karlin, S., W. Doerfler, et al. (1994). "Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses?" J Virol 68(5): 2889-97.
Laird, P. W. (2003). "The power and the promise of DNA methylation markers." Nat Rev Cancer 3(4): 253-66.
Lu, J., S. Y. Chen, et al. (2000). "Upregulation of tyrosine kinase TKT by the Epstein-Barr virus transactivator Zta." J Virol 74(16): 7391-9.
Novik, K. L., I. Nimmrich, et al. (2002). "Epigenomics: genome-wide study of methylation phenomena." Curr Issues Mol Biol 4(4): 111-28.
Ohlsson, R., A. Nystrom, et al. (1993). "IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome." Nat Genet 4(1): 94-7.
Okano, M., S. Xie, et al. (1998). "Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases." Nat Genet 19(3): 219-20.
Petosa, C., P. Morand, et al. (2006). "Structural basis of lytic cycle activation by the Epstein-Barr virus ZEBRA protein." Mol Cell 21(4): 565-72.
Ragoczy, T. and G. Miller (1999). "Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes." J Virol 73(12): 9858-66.
Ramsahoye, B. H., D. Biniszkiewicz, et al. (2000). "Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a." Proc Natl Acad Sci U S A 97(10): 5237-42.
Sandoval Guerrero, K., A. Revilla Vazquez, et al. (2005). "Determination of 5-methyl-cytosine and cytosine in tumor DNA of cancer patients." Electrophoresis 26(6): 1057-62.
Schwachtgen, J. L., P. Houston, et al. (1998). "Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway." J Clin Invest 101(11): 2540-9.
Selmi, C., P. Invernizzi, et al. (2006). "The X chromosome and systemic sclerosis." Curr Opin Rheumatol 18(6): 601-5.
Sharp, A., D. Robinson, et al. (2000). "Age- and tissue-specific variation of X chromosome inactivation ratios in normal women." Hum Genet 107(4): 343-9.
Siedlecki, P. and P. Zielenkiewicz (2006). "Mammalian DNA methyltransferases." Acta Biochim Pol 53(2): 245-56.
Strahl, B. D. and C. D. Allis (2000). "The language of covalent histone modifications." Nature 403(6765): 41-5.
Sukhatme, V. P., X. M. Cao, et al. (1988). "A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization." Cell 53(1): 37-43.
Tao, Q. and K. D. Robertson (2003). "Stealth technology: how Epstein-Barr virus utilizes DNA methylation to cloak itself from immune detection." Clin Immunol 109(1): 53-63.
Thiel, G. and G. Cibelli (2002). "Regulation of life and death by the zinc finger transcription factor Egr-1." J Cell Physiol 193(3): 287-92.
Thorley-Lawson, D. A. and A. Gross (2004). "Persistence of the Epstein-Barr virus and the origins of associated lymphomas." N Engl J Med 350(13): 1328-37.
Tonon, L., G. Bergamaschi, et al. (1998). "Unbalanced X-chromosome inactivation in haemopoietic cells from normal women." Br J Haematol 102(4): 996-1003.
Ulaner, G. A., Y. Yang, et al. (2003). "CTCF binding at the insulin-like growth factor-II (IGF2)/H19 imprinting control region is insufficient to regulate IGF2/H19 expression in human tissues." Endocrinology 144(10): 4420-6.
Volpe, T. A., C. Kidner, et al. (2002). "Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi." Science 297(5588): 1833-7.
Young, L. S. and P. G. Murray (2003). "Epstein-Barr virus and oncogenesis: from latent genes to tumours." Oncogene 22(33): 5108-21.
Zalani, S., E. Holley-Guthrie, et al. (1995). "The Zif268 cellular transcription factor activates expression of the Epstein-Barr virus immediate-early BRLF1 promoter." J Virol 69(6): 3816-23.
Zhang, Y., J. H. Ohyashiki, et al. (2006). "Transcriptional profiling of Epstein-Barr virus (EBV) genes and host cellular genes in nasal NK/T-cell lymphoma and chronic active EBV infection." Br J Cancer 94(4): 599-608.
Zhang, Y. and B. Tycko (1992). "Monoallelic expression of the human H19 gene." Nat Genet 1(1): 40-4.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊