跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 17:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王亮堯
研究生(外文):Liang-yao Wang
論文名稱:平行板導波結構表面電漿子特性研究
論文名稱(外文):Simulation Studies of Surface Plasmon in Parallel-Plate Waveguides Structure
指導教授:藍永強
指導教授(外文):Yung-chiang Lan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:118
中文關鍵詞:表面電漿子色散曲線模擬
外文關鍵詞:simulationdispersion curvesurface plasmons
相關次數:
  • 被引用被引用:1
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本論文中運用不同的結構來激發表面電漿子的效果,分別為無窮金屬所組成的半平面、有限厚度金屬與介質所組成的結構以及金屬-絕緣體-金屬結構三種架構,對於任何結構之色散曲線的了解,輸入的光源無法激發表面電漿子,須藉助額外提供波向量,本論文所使用的為邊耦合方式來提供額外的波向量。有限厚度與金屬-絕緣體-金屬之結構,金屬與空氣層之介面都會產生一組ω ±共振模態的效果,也可以發現在於有限厚度金屬板之厚度增加時與金屬-絕緣體-金屬之絕緣體厚度增加時,其結果都會趨近於無窮厚度金屬板之表面電漿模態,這樣的結果是可以預期的,並且利用對稱與反對稱共振的模態可激發不同效果的表面電漿波。
The thesis uses different structure to excite surface plasmons,There are three kinds of structure,It is a metal with infinite thickness、a metal with finite thickness and Metal-Insulator-Metal,Any structure isn't to excite surface plasmons by dispersion curve,It is added the wave vector,The thesis uses end-fire coupling to increase the wave vector。There are two kinds of ω ± mode in structure of a metal with finite thickness and Metal-Insulator-Metal,When the metal thickness of a metal with finite thickness increases and the Insulator thickness of Metal -Insulator-Metal,It is equal to a metal with infinite thickness,Such a result expecting,Use the resonance modes of the symmetry and antiesymmetry to excite difference result of surface plasmons。
中文摘要················································ Ⅰ
英文摘要················································ Ⅱ
致謝···················································· Ⅲ
目錄····························Ⅳ
圖目錄···························Ⅵ
第一章 簡介············································· 1
第二章 表面電漿子理論···················3
2-1 色散曲線之數學推倒······························· 3
2-2 表面電漿發方式·································· 15
第三章 FDTD 模擬方法··································· 19
3-1 馬克斯威爾方程式簡介···························· 19
3-2 FDTD 基本理論·····················21
3-3 FDTD 穩定性之探討······························· 23
3-4 FDTD 完美匹配層之邊界條件······················· 25
3-5 ISE TACD 商業軟體簡介··························· 28
第四章 模擬結果········································ 32
4-1 無窮半平面波源測試······························ 32
4-1-1 無窮半平面模擬結構與結果······················ 34
4-2 有限厚度金屬板表面電漿激發情形·················· 51
4-2-1 有限厚度金屬板模擬結構與結果················ 53
4-3 金屬絕緣體金屬結構簡介·························· 91
4-3-1 金屬絕緣體金屬模擬結構與結果················ 92
第五章 結論························110
參考文獻··············································· 112
附錄····························115
[1] M. Ohtsu, k. kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE
J. Selected Topics Quanyum Electronics. 8, 839 (2002)
[2] S. Kawata, M. Ohtsu, and M. Irie, ed., Nano-Optics (Springer, 2002)
[3] R. W. Wood, Philos.Mag. 4,396 1902
[4] H. Raether, Surface Plasmons Springer, New York ,1988
[5] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, Phys. Reports
408,131 2005
[6] D. A. Suhultz, Current Opinion in Biotechnology 14,13 (2003)
[7] 吳民耀、劉威志 物理雙月刊(二十八卷二期) 4 月,2006
[8] E. N. Economou. The James Franck Institute and Department of
Physics, The University of Chicago, Chicago, Illinois 60637. Phys.
Rev. 182, 539 (1969)
[9] H.Raether, “Physics of Thick Film:Advances in Research and
Development”,vol.9, page 152
[10] Igor I. Smolyaninov1 Jill Elliott,2 Anatoly V. Zayats,2 and Christopher
C. Davis1,Phys.Rev.Lett. 94, 057401 (2005)
[11] J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33,5186(2004)
[12] 邱國斌、蔡定平 物理雙月刊(二十八卷二期) 4 月,2006
[13] J. J. Brion ,R. F. Wallis, A. Hartstein and E. Burstein, Phys. Rev. Lett.
28, 1455 (1972)
[14] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys.
Rev. B 73, 035407 (2006)
[15] G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, Optics Letters, Vol.
8, Issue 7, pp. 386
[16] Leveque, Gaetan; Martin, Olivier J. F., Journal of Applied Physics,
Volume 100, Issue 12, pp. 124301-124301-6 (2006).
[17] A. C. J. Paes et al., Brazilian J.Phys. vol. 33, p.411, (2003)
[18] K. S. Yee, , IEEE Trans. Antennas Propagat ., vol. AP-14, pp.
302-307,May .1966
[19] D.K.Cheng “Field and Wave Electromagneties” senond edition
[20] Taflove, A., Umashankar, K. R., Beker, B., Harfoush, F. and Yee, K. S.,
IEEE Trahsactions on antennas and propagation, vol 36. no 2. 1988
[21] Engquist, B. and Majda, A., "Absorbing Boundary Conditions for the
Numerical Simulation of Waves", Mathematics of Computation, vol.
31, pp.629~651, 1977
[22] Trefethen, L. N. and Halpern, L., "Well-Posedness of One-Way Wave
Equations and Absorbing Boundary Conditions", Mathematics of
Computation, vol. 47, pp.421~435,1986
[23] Berenger, J. P., Journal of Computational Physics, vol. 114, pp.185~
200, 1994
[24] Berenger, J. P., Journal of Computational Physics, vol.127,pp.363~379
1996
[25] Amnon Yariv “Optical Electronics in Modern Communications” Fifth
edition
[26] F.-C. Chien and S.-J. Chen,Biosensors & Bioelectronics, vol. 20, no. 3,
pp. 633-642, October 2004.
[27] K. L. Kliewer and R. Fuchs, Phys. Rev. 140, A2076 1965
[28] K. L. Kliewer and R. Fuchs, Phys. Rev. 144, 495 1966
[29] K. L. Kliewer and R. Fuchs, Phys. Rev. 150, 573 1966
[30] D. H. Staelin, A. W. Morgenthaler, and J. A. Kong, Electromagnetic
Waves (Prentice-Hall Inc., New York,(1994), Chap. 7.
[31] Yu. M. Aliev, H. Schluter, and A. Shivarova, Guided-Wave-Produced
Plasmas (Springer-Verlag, Heidelberg,(2000), Chap. 3.
[32] K. Y. Kim, Y. K. Cho, H. -S. Tae, and J. -H. Lee, Opt. Express 14,
320-330 (2006)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top