跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 02:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅偉銓
研究生(外文):Wei-Cyuan Lo
論文名稱:奈米碳管之第一原理計算研究
論文名稱(外文):Simulation Studies of Carbon Nanotube-Using First Principle Method
指導教授:藍永強
指導教授(外文):Yung-Chiang Lan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:100
中文關鍵詞:模擬電場碳管
外文關鍵詞:SimulationElectric FieldCarbon nanotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將根據第一原理的密度泛函理論來計算單壁奈米碳管的
電子特性與功函數,首先將針對無限長奈米碳管做結構收斂測試,並
對其做能帶結構計算與態密度計算,藉由能帶結構與態密度我們可以
了解奈米碳管的電子特性,進一步可判斷是否為金屬特性或半導體特
性。接著我們對奈米碳管做垂直管軸方向外加電場模擬,由能帶結構
圖觀察其能隙與能帶變化,我們發現半導體性質的奈米碳管,在電場
作用下能隙消失,而此結果使得奈米碳管可以運用於場效應電晶體
上。最後我們對奈米碳管做平行管軸方向外加電場模擬,此時我們著
重於電場對功函數的變化,我們發現奈米碳管功函數隨電場增強而下
降,而這正是奈米碳管場發射的主要因素,並且我們針對不同長度的
奈米碳管比較其功函數受電場影響的變化,發現奈米碳管的長度並無
嚴重影響功函數的變化。
We will compute the electronic properties and work functions of
single-walled carbon nanotube according to the first principle method.
First we find the lowest energy structure of infinitely-long carbon
nanotube by the convergence calculation, and then calculate the density
of states and band structures. Now we can distinguish between metal and
semiconductor of carbon nanotube by it’s density of states and band
structures. Second we simulate carbon nanotube under transverse electric
field. We find that band gap modifications occur to the semiconducting
carbon nanotube under an external electric field by inducing a
semiconductor-metal transition. It can apply to field effect transistors as a
result of semiconductor-metal transition. Finally we simulate carbon
nanotube under vertical electric field. We find that work function
modifications occur to carbon nanotube under an external electric field.
And tube length do not effect the work function modifications.
致謝···················································· Ⅰ
中文摘要················································ Ⅱ
英文摘要················································ Ⅲ
目錄···················································· Ⅳ
圖目錄·················································· Ⅵ
表目錄·················································· ⅩⅠ
第一章 簡介············································· 1
1-1 奈米碳管簡介································ 3
第二章 計算原理與方法··································· 6
2-1 密度泛函理論································ 6
2-2 Kohn-Sham 方法····························· 10
2-3 局部密度近似法····························· 12
2-4 Kohn-Sham 方程式與自洽場計算··············· 14
2-5 能帶理論計算······························· 17
2-6 虛位勢法··································· 21
第三章 SIESTA 模擬軟體簡介····························· 25
3-1 SIESTA 計算原理···························· 25
3-2 國家高速網路中心主機設備簡介··············· 28
第四章 模擬結果與分析·································· 32
4-1 無限長奈米碳管結構的模擬結果··············· 32
4-1-1 結構收斂測試························ 36
4-1-2 能帶結構計算························ 40
4-1-3 狀態密度計算························ 43
4-2 奈米碳管垂直管軸方向外加電場模擬結果······· 48
4-2-1 結構收斂測試························ 48
4-2-2 垂直管軸方向外加電場計算············ 52
4-3 奈米碳管平行管軸方向外加電場模擬結果······· 67
4-3-1 結構收斂測試························ 67
4-3-2 平行管軸方向外加電場計算············ 73
第五章 結論············································ 89
附錄···················································· 92
參考文獻················································ 99
[1] O. Gulseren, T. Yildirim, S. Ciraci, and C. Kılıc Phys. Phys. Rev. B 65, 155410 (2002)
[2] R. G. Parr, and W. Yang, “Density-Functional Theory of Atom and Molecules”, by Oxford University Press (1989)
[3] D. Sánchez-Portal, P. Ordejón, E. Artacho and J. M. Soler Int. J. Quantum Chem., 65, 453 (1997)
[4] P. Ordejón, D. A. Drabold, M. P. Grumbach and R. M. Martin Phys.Rev. B 51, 1456 (1995)
[5] J. Junquera, Ó. Paz, D. Sánchez-Portal and E. Artacho Phys. Rev. B 64, 235111 (2001)
[6] Iijima S 1991 Nature 56 345
[7] 吉村進。碳素(日) 151, 51 (1992)
[8] Dresselhaus M.S., Dresselhas G., and Eklund P.C., Science of Fullerenes and Carbon Nanotubes, Academic Press, New York,(1996)
[9] 成會明 編著, 張勁燕 校訂, 奈米碳管 Carbon Nanotube (2004)
[10] P. Hohenberg and W. Kohn, Phys.Rev. 136, pp. B864−Β871(1964)
[11] W. Kohn and L. J. Sham, Phys.Rev.,140,A1133 (1965)
[12] J. P. Perdew, Y. Wang, Phys. Rev. B, 33, 8800 (1986).
[13] J. P. Perdew, Y. Wang, Phys. Rev. B, 46, 6671 (1992)
[14] G. P. Kerker, Phys. Rev. B, 23, 3802 (1981)
[15] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976)
[16] J. D. Pack and H. J. Monkhorst, Phys. Rev. B 16, 1748 (1977)
[17] D. R. Hamann, M. Schlüter and C. Chiang, Phys. Rev. Lett. 43, pp.1494−1497 (1979)
[18] SIESTA, http://www.uam.es/departamentos/ciencias/fismateriac/siesta/ (2007)
[19] National Center for High-Performance Computing, http://www.nchc.org.tw (2007)
[20] M. Schmidt, R. Kusche, T. Hippler, J. Donges, and W. Kronmullter, Phys. Rev. Lett. 86, 1191 (2001)
[21] Ivo Souza, Jorge I´n˜iguez, and David Vanderbilt, Phys Rev Lett.89. 117602 (2002)
[22] Yong-Hyun Kim and K. J. Chang, Phys RevB. 64. 153404 (2001)
[23] J. Appenzeller, J. Knoch, V. Derycke, R. Martel , S. Wind, and Ph.Avouris, Phys. Rev. Letter, 89, 126801 (2002)
[24] 劉元震,王仲春,董亞強 編著。電子發射與光電陰極。北京理工大學出版社 (1995)
[25] Satoru Suzuki, Chris Bower, Yoshio Watanabe, and Otto Zhou ,Appl. Phys. Lett. 76, 4007 (2000)
[26] Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig,and R. P. H. Chang, Appl. Phys. Lett. 72, 2912 (1998)
[27] R.H. Folwer and L. Nordheim , Proc. R. Soc. London, Ser A 119,683 (1928)
[28] XcrySDen, http://www.xcrysden.org/ (2007)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top