|
1.Kokubo T, Kim HM, Kawashita M: Novel bioactive materials with different mechanical properties. Biomaterials 2003, 24:2161-2175.
2.Vance RJ, Miller DC, Thapa A, Haberstroh KM, Webster TJ: Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Biomaterials 2004, 25:2095-2103.
3.Bharati S, Basu D: Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF. Bull Mater Sci 2005, 28(6):617–621.
4.Wang M: Bioactive materials and processing. Biomaterials and Tissue Engineering 2004, editor: D. Shi, Berlin Heidelberg: Springer, p. 1–82.
5.Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R: Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 2000, 51:475-483.
6.Evis Z, Sato M, Webster TJ: Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites. J Biomed Mater Res A 2006, 78:500-507.
7.Ravaglioli A, Krajewski A: Bioceramics. Chapman & Hall, London 1992.
8.Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R: Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 2001, 22:1327-1333.
9.Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB: Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 2004, 25:2111-2121.
10.Porter AE: Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition. Micron 2006.
11.Wei M, Evans JH, Bostrom T, Grondahl L: Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med 2003, 14:311-320.
12.He Z, Ma J, Wang C: Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics. Biomaterials 2005, 26:1613-1621.
13.Christenson RH: Biochemical markers of bone metabolism: an overview. Clin Biochem 1997, 30:573-593.
14.Stein GS, Lian JB, Owen TA: Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. Faseb J 1990, 4:3111-3123.
15.Aubin JE, Heersche JM: Osteoblastic cell lineage. Cellular and molecular biology of bone. New York academic Press 1993:1-45.
16.Schmidt C, Ignatius AA, Claes LE: Proliferation and differentiation parameters of human osteoblasts on titanium and steel surfaces. J Biomed Mater Res 2001, 54:209-215.
17.Baxter LC, Frauchiger V, Textor M, ap Gwynn I, Richards RG: Fibroblast and osteoblast adhesion and morphology on calcium phosphate surfaces. Eur Cell Mater 2002, 4:1-17.
18.Cerroni L, Filocamo R, Fabbri M, Piconi C, Caropreso S, Condo SG: Growth of osteoblast-like cells on porous hydroxyapatite ceramics: an in vitro study. Biomol Eng 2002, 19:119-124.
19.Hong JY, Kim YJ, Lee HW, Lee WK, Ko JS, Kim HM: Osteoblastic cell response to thin film of poorly crystalline calcium phosphate apatite formed at low temperatures. Biomaterials 2003, 24:2977-2984.
20.Jun IK, Jang JH, Kim HW, Kim HE: Recombinant osteopontin fragment coating on hydroxyapatite for enhanced osteoblast-like cell responses. J Mater Sci Mater Med 2005, 40:2891 – 2895.
21.Kumar R, Prakash KH, Cheang P, Khor KA: Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir 2004, 20:5196-5200.
22.Kothapalli CR, Wei M, Legeros RZ, Shaw MT: Influence of temperature and aging time on HA synthesized by the hydrothermal method. J Mater Sci Mater Med 2005, 16:441-446.
23.Gu YW, Loh NH, Kho KA, Tor SB, Cheang P: Spark plasma sintering of hydroxyapatite powders. Biomaterials 2002, 23:37-43.
24.Wang C, Duana Y, Markovicc B, Barbarad J, Howlettd CR, Zhanga X, Zreiqatd H: Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomaterials 2004, 25:2949–2956.
25.Rouahi M, Gallet O, Champion E, Dentzer J, Hardouin P, Anselme K: Influence of hydroxyapatite microstructure on human bone cell response. J Biomed Mater Res A 2006, 78:222-235.
26.Schaffner P, Dard MM: Structure and function of RGD peptides involved in bone biology. Cell Mol Life Sci 2003, 60:119-132.
|