跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何明哲
研究生(外文):Ming-che Ho
論文名稱:自然增強物與古柯鹼在長期單胺類氧化酶抑制及及單胺類氧化酶B型剔除老鼠的反應
論文名稱(外文):Natural and Cocaine Reward in Chronically MAO Inhibitor-treated and MAO Subtype B knockout Mice
指導教授:游一龍游一龍引用關係
指導教授(外文):Lung Yu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:行為醫學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:43
中文關鍵詞:單胺類氧化酶抑制劑單胺類氧化酶
外文關鍵詞:monoamine oxidasemonoamine oxidase subtype B knockout miceself administrationcocainemonoamine oxidase inhibitors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
許多證據支持古柯鹼強化成癮及繼續使用的行為是因為單胺類神經傳導素的釋放改變的假說。古柯鹼會阻斷這些神經傳導素經由轉運子回收收到突觸前的神經元,造成突觸間的神經傳導素的增加,進而引發強烈愉悅的感覺及造成取藥成癮的行為。之前有些研究顯示使用單胺類神經傳導素轉運子的抑制劑無法抑制古柯鹼的再次上癮。在本研究中,我們使用單胺類氧化酶B型基因剔除老鼠及長期給予單胺類氧化酶抑制劑去觀察古柯鹼的自我注射行為。我們發現1.慢性使用單胺類氧化酶抑制劑不會造成獲取自然酬賞物-食物的行為,但是會降低老鼠對於古柯鹼的愉悅感受及需求;2.單胺類氧化酶B型基因剔除老鼠比其基因對照型老鼠有較高古柯鹼的需求。
A large body of evidence supports the hypothesis that monoamines are involved in the cocaine craving and associated behavior. Cocaine has been known to block reuptake of these neurotransmitters by inhibiting their own transporters, thus enhance synaptic availability of these neurotransmitters. Increased synaptic monoamine concentration have been associated with the euphoric (reinforcing) efficacy and the priming effects of cocaine in reinstatement designs. In this study, the acquisition curve of cocaine self administration was examined in MAO subtype B knockout mice and long-term MAO inhibitor-treated mice. We found that 1) chronic MAO inhibitor (MAOI) treatment did not seem to affect the natural reward (food)-associated operant conditioning, while attenuated the rewarding effects of cocaine; 2) the responses for cocaine self administration in MAO subtype B knockout mice were higher than them in the wild type mice, however there was a similar acquisition curve for the food reward in knockout and wild type mice.
I. 摘要.............. 1
II. Abstract.... 2
III. Key Words............. 3
IV. Acknowledgments......... 3
V. Aim...... 4
VI. Contents..... 5-6
VII. Figure Index......... 7
VIII. Context..... 8-39
1. Introduction.... 8-9
2. Materials and Method........... 10-20
2.1 Animals... 10
2.2 PCR.... 11
2.3 Drug... 12
2.4 Food and cocaine provided device.... 13
2.5 Locomotor Activity Measurement .... 14
2.6 Elevated Plus Maze........... 15
2.7 Resident-intruder Test...... 16
2.8 Food Training under the FR-1 Schedule............... 17
2.9 Cocaine Self-administration Behavior under the FR-1 Schedule..... 18
2.10 HPLC ... 19
2.11 Statistical analysis...... 20
3. Results..... 21-32
3.1 PCR of the wild type mice and MAO subtype B knockout mice..... 21
3.2 The dose response curve of monoamine oxidase inhibitor on locomotor activity...... 22
3.3 Impact of chronic MAOIs treatment on food training under the FR-1 schedules..... 23
3.4 MAO subtype B mice and Wild type mice on food training under the FR-1 schedules... 24
3.5 Impact of chronic MAOIs treatment on cocaine self administration under the FR-1 schedules.. 25
3.6 MAO subtype B mice and Wild type mice on cocaine self administration under the FR-1 schedules... 26
3.7 MAO subtype B mice and Wild type mice on elevated plus maze.... 27
3.8 MAO subtype B mice and Wild type mice on resident-intruder..... 28
3.9 DA levels in PFC, Striatum, NAc, and Hippocampus of MAO subtype B mice and Wild type mice....................... 29
3.10 DOPAC levels in PFC, Striatum, NAc, and Hippocampus of MAO subtype B mice and Wild type mice................... 30
3.11 5-HT levels in PFC, Striatum, NAc, and Hippocampus of MAO subtype B mice and Wild type mice...................... 31
3.12 5-HIAA levels in PFC, Striatum, NAc, and Hippocampus of MAO subtype B mice and Wild type mice................... 32
4. Discussions... 33-34
5. Conclusions... 35
6. References .... 36-39
IX. Appendix..... 40-43
Beatriz A., & Rocha B. A. (2003). Stimulant and reinforcing effects of cocaine in monoamine transporter knockout mice. European Journal of Pharmacology, 479, 107– 115.
Bergman J., Yasar S., & Winger G. (2001). Psychomotor stimulant effects of β-phenylethylamine in monkeys treated with MAO-B inhibitors. Psychopharmacology, 159, 21-30.
Chen K., Holschneider D. P., Wu W., Rebrin I., & Shin J. C. (2004). A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behavior. The Journal of Biological Chemistry, 38, 39645-39652.
Chen L., He M., Sibille E., Thompson A., Sarnyai Z., Baker H., Shippenberg T., & Toth M. (1999). Adaptive changes in postsynaptic dopamine receptors despite unaltered dopamine dynamics in mice lacking monoamine oxidase B. Journal of Neruochemistry, 73, 647-655.
Cohen C., Curet O., Perrault G., & Sanger D. J. (1999). Reduction of oral ethanol self-administration in rats by monoamine oxidase inhibitors. Pharmacology Biochemistry and Behavior, 64, 535-539.
Cossu G., Ledent C., Fattore L., Imperato A., Bohme G. A., Parmentier M., & Fratta W. (2001). Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behavioural Brain Research, 118, 61–65.
Curet O., Damoiseau-Ovens G., Sauvage C., Sontag N., Avenet P., Depoortere H., Caille D., Bergis O., & Scatton B. (1998). Preclinical profile of befloxatone, a new reversible MAO-A inhibitor. Journal of Affective Disorders, 51, 287-303.
Elkashef A., Fudala P. J., Gorgon L., Li S. H., Kahn R., Chiang N., Vocci F., Collins J., Jones K., Boardman K., & Sather M. (2006). Double-blind, placebo-controlled trial of selegiline transdermal system (STS) for the treatment of cocaine dependence. Drug and Alcohol Dependence, 85, 191-197.
Fiedorowicz J. G., & Swartz K. L. (2004). The role of monoamine oxidase inhibitors in current psychiatric practice. Journal of Psychiatric Practice, 10, 239-248.
Fornai F., Chen K., Giorgi F. S., Gesi M., Alessandri M. G., & Shin J. C. (1999). Striatal dopamine metabolism in monoamine oxidase B-deficient mice: A brain dialysis study. Journal of neurochemistry, 73, 2434-2440.
Fornai F., Giorgi F. S., Gesi M., Chen K., Alessandri M. G., & Shin J. C. (2001). Biochemical effects of the monoamine neurotoxins DSP-4 and MDMA in specific brain regions of MAO-B-deficient mice. Synapse, 39, 213-221.
Fowler J. S., Volkow N. D., Franceschi L. D., Wang G. J., Macgregor R., Shea C., Garza V., Pappas N., Carter P., Netusil N., Bridge P., Liederman D., Elkashef A., Rotrosen J., & Hitzemann R. (2001). Evidence that l-deprenyl treatment for one week dose not inhibit MAO A or the dopamine transporter in the human brain. Life Sciences, 68, 2759-2768.
Gatch M. B., Taylor C. M., Flores E., Selvig M., & Forster M. J. (2006). Effects of monoamine oxidase inhibitors on cocaine discrimination in rats. Behavioural Pharmacology, 17, 151-159.
Grimsby J., Toth M., Chen K., Kumazawa T., Klaidman L., Adams J. D., Karoum F., Gal J., & Shih J. C. (1997). Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat Genel, 17, 206-210.
Haberny K. A., Walsh S. L., Ginn D. H., Wilkins J. N., Garner J. E., Setoda D., & Bigelow G. E. (1995). Absence of acute cocaine interactions with the MAO-B inhibitor selegiline. Drug and Alcohol Dependence, 39, 55-62.
Herraiz T., & Chaparro C. (2005). Human monoamine oxidase is inhibited by tobacco smoke: β-carboline alkaloids act as potent and reversible inhibitors. Biochemical and Biophysical Research Communication, 326, 378-386.
Houtsmuller E. J., Notes L. D., Newton T., Sluis N., Chiang N., Elkashef A., & Bigelow G. E. (2004). Transdermal selegiline and intravenous cocaine: safety and interactions. Psychopharmacology, 172, 31-40.
Huotari M., Santha M., Lucas L. R., Karayiorgou M., Gogos J. A., & Mannisto P. T. (2002). Effect of dopamine uptake inhibition on brain catecholamine levels and locomotion in catechol-O-methyltransferase-disrupted mice. The Journal of Pharmacology and Experimental Therapeutics, 303, 1309-1316.
Kitanaka N., Kitanaka J., & Takemura M. (2005). Repeated clorgyline treatment inhibits methamphetamine-induced behavioral sensitization in mice. Neurochemical Research, 30, 445-451.
Kuzmin A., Zvartau E., Gessa G. L., Martellotta M. C., & Fratta W. (1992). The calcium antagonists isradipine and nimodipine suppress cocaine and morphine intravenous self-administration in drug-naive mice. Pharmacological Biochemical Behavior, 41, 497–500.
Lamensdorf I., Youdim M. B. H., & Finberg J. P. M. (1996). Effect of long-term treatment with selective monoamine oxidase A and B inhibitors on dopamine release from rat striatum in vivo. Journal of Neurochemistry, 67, 1532-1538.
Ledent C., Valverde O., Cossu G., Petitet F., Aubert J-F., Baslet F., Bohme G. A., Imperato A., Pedrazzini T., Roques B. P., Vassart G., Fratta W., & Parmentier M. (1999). Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science, 283, 401–404.
Lee M., Chen K., Shih J. C., & Hiroi N. (2004). MAO-B knockout mice exhibit deficient habituation of locomotor activity but normal nicotine intake. Genes Brain Behavoral, 3, 216-227.
Lesch K. P., & Merschdorf U. (2000). Impulsivity, aggression, and serotonin: A molecular psychobiological perspective. Behavioral Sciences and the Law, 18, 581-604.
Martellotta M. C., Kuzmin A., Zvartau E., Cossu G., Gessa G. L., Fratta W. (1995). Isradipine inhibits nicotine intravenous self-administration in drug-naive mice. Pharmacological Biochemical Behavior, 52, 271–274.
Maruyama W., Weinstock M., Youdim M. B. H., Nagai M., & Naoi M. (2003). Anti-apoptotic action of anti-Alzheimer drug, TV3326 [(N-propargyl)-(3R)-aminoindan-5-yl]-ethyl methyl carbamate, a novel cholinesterase-monoamine oxidase inhibitor. Neuroscience Letters, 341, 233-236.
Mejia J. M., Ervin F. R., Baker G. B., & Palmour R. M, (2002). Monoamine oxidase inhibition during brain development induces pathological aggressive behavior in mice. Society of Biological Psychiatry, 52, 811-822.
Mercuri N. B., Scarponi M., Bonci A., Siniscalchl A., & Bernardl G. (1997). Mono amine oxidase inhibition causes a long-term prolongation of the dopamine-induced responses in rat midbrain dopaminergic cells. The Journal of Neuroscience, 17, 2267-2271.
Morgan A. D., Carroll M. E., Loth A. K., Stoffel M., & Wickman K. (2003). Decreased cocaine self-administration in Kir3 potassium channel subunit knockout mice. Neuropsychopharmacology, 28, 932-938.
Oreland L., Damberg M., Hallman J., Berggard C., & Garpenstrand H. (2002). Risk factors for the neurohumoral alterations underlying personality disturbances. Neurotox Research, 4, 421-426.
Pivac N., Knezevic J., Mustapic M., Dezeljin M., Muck-Seler D., Kozaric-Kovacic D., Balija M., Matijevic T., & Pavelic J. (2006). The lack of association between monoamine oxidase (MAO) intron 13 polymorphism and platelet MAO-B activity among men. Life Science, 18, [Epub ahead of print].
Popova N. K., Gilinskii M. A., Amstislavskaya T. G. (2004). Effect of monoamine oxidase gene knockout on dopamine metabolism in mouse brain structures. Bull Experimental Biological Medician, 137, 382-384.
Schiffer W. K., Azomoodeh M., Gerasimov M., Volkow N. D., Fowler J. S., and Dewey S. (2003). Selegiline potentiates cocaine-induced increases in rodent nucleus accumbens dopamine. Synapse, 48, 35-38.
Shin J. C. (2004). Cloning, after cloning, knockout-out mice, and physiological functions of MAO A and B. NeuroToxicology, 25, 21-30.
Shih J. C., Chen K. & Ridd M. J. (1999). Monoamine oxidase: From genes to behavior. Annual Review Neuroscience, 22, 197–217.
Shin J. C., & Thompson R. F. (1999). Monoamine oxidase in neuropsychiatry and behavior. American Journal of Human Genet, 65, 593-598.
Soria G., Mendizabal V., Tourino C., Robledo P., Ledent C., Parmentier M., Maldonado R., & Valverde O. (2005). Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology, 30, 1670-1680.
Tabakman R., Lecht S., & Lazarovici P. (2003). Neuroprotection by monoamine oxidase B inhibitors: a therapeutic strategy for Parkinson’s disease? BioEssays, 26, 80-90.
Tatsuta T., Kitanaka N., Kitanaka J., Morita Y., & Takemura M. (2005). Effects of monoamine oxidase inhibitors on methamphetamine-induced stereotype in mice and rats. Neurochemical Research, 30, 1377-1385.
Thomsen M., & Caine S. B. (2007). Intravenous drug self-administration in mice: Practical considerations. Behavoral Genet, 37, 101-118.
Thomsen M., Woldbye D. P. D., Wortwein G., Fink-Jensen A., Wess, J., & Caine S. B. (2005). Reduced cocaine self-administration in muscarinicM5 acetylcholine receptor-deficient mice. The Journal of Neuroscience, 25, 8141– 8149.
Vanyukov M. M., Maher B. S., Devlin B., Tarter R. E., Kirillova G. P., Yu L. M., & Ferrell R. E. (2004). Haplotypes of the monoamine oxidase genes and the risk for substance use disorders. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics), 125B, 120–125.
Villegier A. S., Salomon L., Granon S., Changeux J. P., Belluzzi J. D., Leslie F. M., & Tassin J. P. (2005). Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine. Neuropsychopharmacology, 14, [Epub ahead of print].
Wayment H.K., Schenk J.O., & Sorg B. A. (2001). Characterization of extracellular dopamine clearance in the medial prefrontal cortex: Role of monoamine uptake and monoamine oxidase inhibition. The Journal of Neuroscience, 21, 35-44
Youdim M. B.H., Fridkin M., & Zheng H. (2005). Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mechanisms of Ageing and Development, 126, 317-326.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top