跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳志昌
研究生(外文):Chih-Chang Wu
論文名稱:以高分子與金屬多層膜堆疊技術應用於可撓式觸覺感測器之製作
論文名稱(外文):Fabrication of stacked polymer and metal multilayer on flexible tactile sensor
指導教授:鍾震桂
指導教授(外文):Chen-Kui Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米科技暨微系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:111
中文關鍵詞:觸覺感測器微機電系統技術高分子基材
外文關鍵詞:polymer-basedMEMStactile sensor
相關次數:
  • 被引用被引用:4
  • 點閱點閱:563
  • 評分評分:
  • 下載下載:109
  • 收藏至我的研究室書目清單書目收藏:0
觸覺感測器被廣泛的應用在機電與生物醫學領域中,本研究主要以高分子材料做為基材,利用微機電製程技術以高分子與金屬多層膜堆疊製作可撓式觸覺感測器;別於一般壓力感測器,我們以聚亞醯胺、PDMS與液晶高分子不同特性的塑膠材料多層堆疊,提出一種無體加工及無犧牲層釋放製程的元件設計,減少許多繁瑣的製程步驟。以ANSYS 有限模擬軟體求證設計完成的元件結構之可行性,並且將模擬結果的數值做為元件尺寸製作的參考。一般高分子材料的表面普遍為斥水性且附著性不佳,此特點對於金屬化與高分子多層堆疊的製程相當不利,提出以氧電漿表面改質技術改善高分子表面的濕潤性與提高其表面能,藉由量測三種不同液體的接觸角,利用“列夫薛茲-凡得瓦爾/路易斯酸鹼法” 計算並說明高分子表面能的變化。以濺鍍法在PDMS 表面鍍鈦金屬定義電極圖形,但容易因為熱應力的因素導致金屬電極破裂,本文提出兩種方法改善其製成問題;第一,先以延展性較好的金做為電鍍起始層,利用黃光微影定義電極形狀,接著電鍍鎳補強因內應力所造成金薄膜產生皺褶處;其次,利用鈦起始層對於電鍍附著力不佳的特點,以膠帶的黏性將電鍍電極轉印於其上,可避免直接在PDMS 上鍍膜所造成的問題。本研究提出的製程方法將改善高分子在製作元件所造成的問題,並且成功的堆疊出3層高分子與2層金屬的多層結構,並且在面積3.3×3.3 cm2 的範圍內做出空間解析度650 µm 之36 × 36 陣列電容感測器。
Tactile sensors are widely applied in electro-mechanic and bio-medical field. The aim of this study is designing the tactile sensor by stacking polymer and metal multilayer on polymer substrate in MEMS. A novel sensor design is presented that process omits bulk machining or sacrificial layer releasing. Therefore, complicated fabrication steps are reduced. The feasibility of designed device is verified by finite element software and simulation results could be the references for deciding the size of sensor. Polymer surfaces are generally associated with poor adhesion and wettability which are defects regarding stack and metallization of polymers. So the technique of surface modification by using O2 plasma is utilized to enhance the moistness of polymer surface and surface energy. According to three measured liquid contact angles and Lifshitz-van der Waals/Lewis acid-base approach method, the variation of polymer surface energy can be described. Besides, the Titanium electrode which is sputtered on PDMS surface would crack easily due to thermal stress effect. For this reason, there are two methods to improve questions in this thesis. First, Au which has good ductility is utilized to be the seed layer and the pattern of electrode is defined by photolithography. Then Au thin film wrinkle induced by internal force can be improved by Ni electroplating. Moreover, according to the low adhesion for electroplating Ni on Ti seed layer, Ni electrode is imprinted on tape to prevent the crack. In this study, the presented process can improve the defect of fabricating polymer device. Finally, it is successful to fabricate the capacitive sensor which has three polymer layers and two metal layers. 36 × 36 capacitive sensor arrays are made in 3.3×3.3 cm2 and space resolution is 650 µm.
中文摘要 I
Abstract II
致謝 III
目 錄 IV
表目錄 VI
圖目錄 VII
第一章 緒 論 1
1.1 前言 1
1.2 可撓式元件發展現況 2
1.3 研究目標 6
1.4 論文架構 7
第二章 文獻回顧 8
2.1觸覺感測器之應用 8
2.1.1智慧型機器人 8
2.1.2 遠距操作 10
2.1.3 生物醫學應用 11
2.2 觸覺感測器的分類 15
2.2.1 壓阻式感測器 15
2.2.2 壓電式感測器 22
2.2.3 電感式感測器 24
2.2.4 電容式感測器 26
2.2.5 光學式感測器 29
2.3 小結 30
第三章 元件設計與製程規劃 32
3.1 可撓式觸覺感測器之結構設計 33
3.1.1 結構設計 33
3.1.2 可撓式觸覺感測器之結構設計模擬分析 37
3.1.3 光罩設計與製作 45
3.2 製程步驟 47
3.2.1 初步製程設計與規劃 47
3.2.2 製程改善 51
3.3 製程設備 54
3.3.1 黃光微影製程設備 55
3.3.2 金屬薄膜沉積製程設備 58
3.3.3 高分子材料之表面改質技術 60
3.3.4電鍍製程設備 61
3.3.5 微奈米熱壓印製程設備 64
3.3.6 表面形貌檢測與觀察儀器 66
第四章 結果與討論 68
4.1 熱壓印技術於高分子凸塊結構製作 68
4.1.1 矽模仁製作 68
4.2.2 熱壓轉印 73
4.2 氧電漿表面改質技術應用於改善高分子之附著性 83
4.3 解決PDMS 上之金屬破裂問題 91
4.4 訊號量測 99
第五章 結論與未來展望 103
5.1 結論 103
5.2 未來展望 105
參考文獻 106
[1]C. Brian, W. Marc, P. Jane, C. Chris, B. Rob, H. Brenda, K. Richard, D. Chris and H. Eric, “Design, fabrication and vapor characterization of a microfabricated flexural plate resonator sensor and application to integrated sensor arrays,” Sensors and Actuators B, Vol. 73, pp. 112-123, 2001.
[2]T. M. Liakopoulos and C. H. Ahn, “A micro-fluxgate magnetic sensor using micromachined planar solenoid coils,” Sensors and Actuators A, Vol. 44, pp. 66-72, 1999.
[3]J. J. Ho, Y. K. Fang , K. H. Wu, W. T. Hsieh, C. H. Chen, G. S. Chen, M. S. Ju , J. J. Lin and S. B. Hwang, “High sensitivity ethanol gas sensor integrated with a solid-state heater and thermal isolation improvement structure for legal drink-drive limit detecting,” Sensors and Actuators B, Vol. 50, pp. 227-223, 1998.
[4]L. Cao, T. S. Kim, S. C. Mantell and D. L. Polla, “Simulation and fabrication of piezoresistive membrane type MEMS strain sensors,” Sensors and Actuators A, Vol. 80, pp. 273-279, 2000.
[5]J. Thaysen, A. D. Yalcinkaya, P. Vettiger and A. Menon, “Polymer-based stress sensor with integrated readout,” Journal of Physics D: Applied Physics, Vol.35, pp. 2698-2703, 2002.
[6]H. C. Lim, B. Schulkin, M. J. Pulickal, S. Liu, R. Petrova, G. Thomas, S. Wagner, K. Sidhu and J. F. Federici, “Flexible membrane pressure sensor,” Sensors and Actuators A, Vol. 119, pp. 332-335, 2005.
[7]J. N. Palasagaram and R. Ramadoss, “MEMS-Capacitive Pressure Sensor Fabricated Using Printed-Circuit-Processing Techniques,” IEEE Sensors Journal, Vol. 6, pp. 1374-1375, 2006.
[8]U. Buder, J. P. von Klitzing and E. Obermeier, “Reactive ion etching for bulk structuring of polyimide,” Sensors and Actuators A, Vol. 132, pp. 393-399, 2006.
[9]Y. Zhao and T. Cui, “Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 430-435, 2003.
[10]J. K. Larry, F. Paolo, J. P. Nicholas, W. Peter, A. A. Goretty and B. Holger, “Fabrication of plastic microchips by hot embossing,” Lab On a Chip, Vol. 2, pp. 1-4, 2002.
[11]X. C. Shan, T. Ikehara, Y. Murakoshi and R. Maeda, “Applications of micro hot embossing for optical switch formation,” Sensors and Actuators A, Vol. 119, pp. 433-440, 2005.
[12]A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature, Vol. 444, pp. 913-917, 2006.
[13]A. D. Shadi, P. B. Donald and C. B. Zeynep, “Micromachined infrared bolometers on flexible polyimide substrates,” Sensors and Actuators A, Vol. 118, pp. 49-56, 2005.
[14]J. S. Han, Z. Y. Tan, K. Sato and M. Shikida, “Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 282-289, 2005.
[15]M. Woytasik, J. P. Grandchamp, E. D. Gergam, E. Martincic, J. P. Gilles, S. Megherbi, V. Lavalley and V. Mathet, “Fabrication of planar and three-dimensional microcoils on flexible substrates,” Microsyst Technol, Vol. 12, pp. 973-978, 2006.
[16]L. Zhou, S. Jung, E. Brandon and T. N. Jackson, “Flexible Substrate Micro-Crystalline Silicon and Gated Amorphous Silicon Strain Sensors,” IEEE Transactions on Electron Devices, Vol. 53, No. 2, pp. 380-385, 2006.
[17]H. Kudo, T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki and K. Mitsubayashi, “A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques,” Biosensors and Bioelectronics, Vol. 22, pp. 558-562, 2006.
[18]Y. S. Kim, “Microheater-integrated single gas sensor array chip fabricated on flexible polyimide substrate,” Sensors and Actuators B, Vol. 114, pp. 410-417, 2006.
[19]K. H. Shin, C. R. Moon, T. H. Lee, C. H. Lim, Y. J. Kim, “Flexible wireless pressure sensor module,” Sensors and Actuators A, Vol. 123–124, pp. 30-35, 2005.
[20]G. B. Lee, J. H. Wu and J. J. Miau, “A new fabrication process for flexible skin with temperature sensor array,” Journal of Chinese Institute of Engineers, Vol. 25, No. 6, pp. 619-625, 2002.
[21]K. E. Pennywitt, “Robotic tactile sensing,” Byte., Vol. 11, No. 1, pp. 177–200, 1986.
[22]M. H. Lee and H. R. Nicholls, “Tactile sensing for mechatronics a state of the art survey,” Mechatronics, Vol. 9, pp. 1-31, 1999.
[23]J. Engel, J. Chen, Z. Fan and C. Liu, “Polymer micromachined multimodal tactile sensors,” Sensors and Actuators A, Vol. 117, pp. 50-61, 2005.
[24]翁育詩、林溢泓, “骨科產品的發展現況與機會(上),” 化工資訊與商情月刊, 第40期, pp 59-65, 2006.
[25]M. E. H. Eltaib and J. R. Hewit, “Tactile sensing technology for minimal access surgery-a review,” Mechatronics, Vol. 13, pp. 1163-1177, 2003.
[26]M. S. Ju, S. H. Yi, Y. G. Tsuei, and Y. L. Chou, “Fuzzy logic control of electrohydraulic above-knee prostheses,” JSME Series C, Vol. 38, no. 1, pp. 78-86, 1995.
[27]J. G. Webster, “Tactile sensors for robotics and medicine,” John Willey & Sons, 1988.
[28]精密儀器發展中心出版, “微機電系統技術與應用,” 行政院國家學委員會, 2003.
[29]S. M. Sze, “Semiconductor sensors,” John Willey & Sons, 1994.
[30]M. Umemori, J. Sugawara, M. Kawauchi and H. Mitani, “A pressure-distribution sensor (PDS) for evaluation of lip functions,” Journal of Orthodontics and Dentofacial Orthopedics, Vol. 109, pp. 473-480, 1996.
[31]T. Mei, W. J. Li, Y. Ge, Y. Chen, L. Ni and M. H. Chan, “An integrated MEMS three-dimensional tactile sensor with large force range,” Sensors and Actuators A, Vol. 80, pp. 155-162, 2000.
[32]M. Shikida, T. Shimizu, K. Sato and K. Itoigawa, “Active tactile sensor for detecting contact force and hardness of an object”, Sensors and Actuators A, Vol. 103, pp. 213-218, 2003.
[33]T. Mukia, “Development of Soft Areal Tactile Sensors for Symbiotic Robots Using Semiconductor Pressure Sensors”, Proceedings of the IEEE International Conference on Robotics and Biomimetics, pp. 96-100, 2004.
[34]K. Kim, K. R. Lee, Y. K. Kim, D. S. Lee, N. K. Cho, W. H. Kim, K. B. Park, H. D. Park, Y. K. Park, J. H. Kim and J. J. Pak, “3-axes Flexible Tactile Sensor Fabricated by Si Micromachining and Packaging Technoligy”, IEEE MEMS 2006, pp. 678-681, 2006.
[35]J. Engel, J. Chen and C. Liu, “Development of polyimide flexible tactile sensor skin,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 359-366, 2003.
[36]J. Engel, J. Chen, Z. Fan and C. Liu, “Polymer micromachined multimodal tactile sensors”, Sensors and Actuators A, Vol. 117, pp. 50-61, 2005.
[37]S. H. Kim, J. Enge, C. Liu and D. L. Jones, “Texture classification using a polymer-based MEMS tactile sensor”, Journal of Micromechanics and Microengineering, Vol. 15, pp. 912-920, 2005.
[38]J. H. Kim, J. I. Lee, H. J. Lee, Y. K. Park, M. S. Kim and D. I. Kang, “Design of Flexible Tactile Sensor Based on Three-Component Force and Its Fabrication”, Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2578-2581, 2005.
[39]E. S. Hwang, J. H. Seo, and Y. J. Kim, “A Polymer-based Flexible Tactile Sensor for Normal and Shear Load Detection”, IEEE MEMS 2006, pp. 714-717, 2006.
[40]G. M. Atkinson, R. E. Pearson, Z. Ounaies, C. Park, J. S. Harrison and J. A. Midkiff, “Piezoelectric Polyimide Tactile Sensors,” IEEE MEMS 2003, pp. 308-311, 2003.
[41]S. A. Arabshahi and Z. Jiang, “Development of a tactile sensor for Braille pattern recognition: sensor design and simulation,” Smart Materials and Structures, Vol. 14, pp. 1569-1578, 2005.
[42]H. Koh, T. Yasunori and A. Minoru, “Anthropomorphic robotic soft fingertip with randomly distributed receptors,” Robotics and Autonomous Systems, Vol. 54, pp. 104-109, 2006.
[43]N. Futai, N. Futai, K. Matsumoto and I. Shimoyama, A flexible micromachined planar spiral inductor for use as an artificial tactile mechanoreceptor”, Sensors and Actuators A, Vol. 111, pp. 293-303, 2004.
[44]Z. Chu, P. M. Sarro and S. Middelhoek, “Silicon three-axial tactile sensor”, Sensors and Actuators A, Vol. 54, pp. 505-510, 1996.
[45]U. Paschen, M. Leineweber, J. Amelung, M. Schmidt and G. Zimmer, “A novel tactile sensor system for heavy-load applications based on an integrated capacitive pressure sensor”, Sensors and Actuators A, Vol. 68, pp. 294-298, 1998.
[46]M. Leineweber, G. Pelz, M. Schmidt, H. Kappert and G. Zimmer, “New tactile sensor chip with silicone rubber cover”, Sensors and Actuators A, Vol. 84, pp. 236-245, 2000.
[47]T. Salo, T. Vancura and H. Baltes, “CMOS-sealed membrane capacitors for medical tactile sensors”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 769-778, 2006.
[48]H. K. Lee, S. I. Chang, K. H. Kim, S. J. Kim, K. S. Yun, and E. Yoon, “A Modular Expandable Tactile Sensor Using Flexible Polymer,” IEEE MEMS 2005, pp. 642-645, 2005.
[49]G. DeJean, R. Bairavasubramanian, D. Thompson, G. E. Ponchak, M. M. Tentzeris, and J. Papapolymerou, “Liquid Crystal Polymer (LCP): A New Organic Material for the Development of Multilayer Dual-Frequency/ Dual-Polarization Flexible Antenna Arrays,” IEEE Antennas and Wireless Propagation Letters, Vol. 4, pp. 22-26, 2005.
[50]F. F. Faheem, K. C. Gupta and Y. C. Lee, “Flip-Chip Assembly and Liquid Crystal Polymer Encapsulation for Variable MEMS Capacitors,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, pp. 2562-2567, 2003.
[51]B. Wang, W. Eberhardt and H. Kuck, “Plasma pre-treatment of liquid crystal polymer and subsequent metallization by PVD,” Vacuum, Vol. 81, pp. 325-328, 2006.
[52]Y. C. Stephen, R. K. Peter and J. R. Preston, Appl. Phys. Lett., Vol. 67, pp. 3114-3116, 1995.
[53]M. Heckele and W. K. Schomburg, “Review on micro molding of thermoplastic polymers,” J. Micromech. Microeng., Vol. 14, pp. R1–R14, 2004.
[54]E. O. Doebelin, “Measurement systems,” New York: McGrawHill, 1983.
[55]B. Wang, W. Eberhardt and H. Kuck, “Adhesion of PVD layers on liquid crystal polymer pretreated by oxygen-containing plasma,” Vacuum, Vol. 79, pp. 124-128, 2005.
[56]J. V. O. Carel, K. C. Manoj, and J. G. Robert, “Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems,” Chemical Reviews, Vol.88, pp. 927-941, 1988.
[57]O. N. Tretinnikov, “On Neglecting the Polar Nature of Halogenated Hydrocarbons in the Surface Energy Determination of Polar Solids from Contact Angle Measurements,” Journal of Colloid and Interface Science, Vol. 229, pp. 644-647, 2000.
[58]S. L. Rosen, “Fundamental principles of polymeric materials,” John Willey & Sons, 1993.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top