跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 11:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:連剛逸
研究生(外文):Kang-Yi Lien
論文名稱:整合型微流體晶片系統應用於樣品前處理及快速核酸增幅
論文名稱(外文):Miniature Microfluidic System Integrated with a Sample Pretreatment Device for Rapid Nucleic Acid Amplification
指導教授:李國賓李國賓引用關係
指導教授(外文):Gwo-Bin Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米科技暨微系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:124
中文關鍵詞:樣品前處理樣品濃縮分離器聚合酶連鎖反應微型線圈磁珠微機電系統微型全分析系統反轉錄聚合酶連鎖反應混合器微流體系統
外文關鍵詞:μ-TASPCRenrichmentmagnetic beadMEMSmicrofluidic systemmicro mixerseparatormicrocoilsRT-PCRpretreatment
相關次數:
  • 被引用被引用:3
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:1
近年來,生物臨床檢體之前處理與濃縮萃取之程序於醫學檢驗中扮演著十分重要的角色。於傳統醫學檢測中,臨床檢體之前處理往往浪費許多的時間,且其繁複的人工操作與步驟更容易增加檢體之浪費與檢測之準確性。因此,隨著微機電製程技術之成熟,已在許多不同的領域中有顯著的發展,尤其在微小化快速生醫檢測分析晶片更扮演了十分重要的推手角色。藉由微機電製程技術所生產之微流體生醫檢測晶片,其具有高檢測效能、可拋棄式、可攜帶性、低樣品及檢體消耗量、低耗能、體積小以及成本低等優點。尤其以整合全程微流體系統包含生物樣品前處理、傳輸、偵測及分析於同一晶片上之設計,最具發展潛力以及市場價值。
本研究提出一個利用微機電製程,以免疫學之原理利用微型磁珠(Magnetic bead)結合專一性極高之抗體,以萃取特定之DNA細菌(DNA-based bacteria)或RNA病毒(RNA-based viruses),並將以濃縮、純化、分離後,全自動進行聚合酶連鎖反應之生物晶片系統。此微型化晶片系統主要由三大模組組成,分別為用於流體傳輸以及混合之微流體模組;另一為用於產生微型磁場以吸附微型磁珠之磁分離器;最後一個為用於產生微型溫度場以進行聚合酶連鎖反應之微型溫度控制模組。首先,透過使用鍵結高專一性及靈敏性之抗體的磁珠(Antibody-conjugated magnetic bead),利用微流體模組傳輸運送檢體進入混合反應區,流體所造成之擾流將使目標之病原菌或病毒黏附於磁珠表面。其後,再使用由二維或三維的微型線圈所組成之磁分離器,將磁珠在流體之樣品中分離進行目標檢體之純化及濃縮,藉由此步驟,檢體將被淨化且集中,再透過晶片上之微型溫度控制模組控制反應槽內溫度高低之循環,進行聚合酶連鎖反應(PCR)將目標病毒或病原菌進行檢測。此微流體整合型系統藉由主動式微幫浦與微閥門的幫助下,能全自動地進行檢測操作流程,並大幅的縮短檢測之時間及提高其效率。
由實驗資料顯示,本晶片系統之主動式微流體模組除了可以以高達180 µl/min的傳輸速率來輸送檢體外,亦可當作微型混合器使用,並以極高之混合效率進行臨床檢體與微型磁珠之混合。而由銅金屬(Copper, Cu)所電鍍製成之磁分離器可於微流體晶片表面產生微型磁場,以吸附鍵結目標病毒之微型磁珠於晶片表面,進行生物檢體之純化、萃取以及濃縮。此外,本微型線圈更可當作用於後段進行聚合酶連鎖反應之微型加熱器。此晶片系統利用鉑金屬(Platinum, Pt)所製成之微型溫度感測器,搭配塊狀(block type)及螺旋狀(spiral type)之微型加熱器進行溫度升降之循環。此微型溫度控制模組具有極快速之升溫速率(20℃/sec)、冷卻速率(10℃/sec)、均勻的溫度分佈(±0.3℃)以及微小之溫度震盪(±0.2℃)。且由於本微型晶片系統之低阻抗以及低功率,其消耗功率只需1.2W,因此僅需要一顆9V的鎳氫電池,本攜帶式全自動微流體晶片即可運行操作至少15小時以上。再者,本晶片系統已於臨床檢體中成功的純化及檢測出國內流行之登隔熱血清第二型病毒(dengue virus serotype 2)、腸病毒71型(enterovirus 71)、上呼吸道感染疾病之A群鏈球菌(Group A streptococcus)以及肺炎鏈球菌(S. pneumoniae),並利用抗體之高專一性以及選擇性,分別檢測出不同型態之病毒及細菌。此外,本晶片系統更成功的利用磁珠濃縮極低濃度之臨床檢體,並成功純化、萃取以及偵測。本晶片系統之檢測靈敏濃度,分別為病毒檢體100 PFU/ml以及細菌檢體100 CFU/ml,且利用本晶片之高升降溫速率之優點,相對於傳統大型儀器檢測,可以節省近50%的檢測時間。相信於不久的將來,本晶片系統所提供之快速自動化檢測平台,將於基因分析、分子生物以及快速感染性疾病之偵測將有極大之助益。
Recently, purification and enrichment of bio-samples is crucial for the analysis of biosamples with an ultra-low concentration that the performance of the detection system can be efficiently increased. Apart from that, clinical samples usually contain biological medium that would normally inhibit the subsequent ribonucleic acid (RNA)/deoxyribonucleic acid (DNA) amplification process. Moreover, there still need several tedious purification and washing steps and labor-intensive processes to complete the sample preparation. In addition, a number of large-scale equipments are usually needed in the complex pretreatment procedures and the bio-samples may also be wasted and cause some contaminations during manual operations.
To improve this, the concept of MEMS (micro-electro-mechanical-system)-based miniaturization is applied in the magnet beard-based sample purification and enrichment process. It is generally believed that the miniaturized bio-devices typically bring the advantages of shorter diagnosis times, less sample and reagent consumption, improved resolution, higher sensitivity, and lower cost. By the incorporation of the microfluidic system, the miniature bio-devices provide the powerful techniques to transport or mix the fluids in the system and make the biological diagnosis a quick and automatic process. Nevertheless, the integrated systems still need other detection chambers to perform biological diagnosis. And the on-chip microfluidic modules still need several sets of unidirectional microfluidic structures to complete the whole process. As a result, several electromagnetic valves (EMVs) are usually required to deliver the fluid in the microchannels and the manual operations are normally required since the lack of function of sample pretreatment in the micro system.
Consequently, there is a need for a sample pretreatment process by utilizing a microfluidic system to automate the nucleic acid amplification process with less human intervention and also to improve sensitivity and selectivity. The study therefore proposes three new miniature reverse transcription polymerase chain reaction (RT-PCR) systems that integrate with bio-sample pretreatment devices using superparamagnetic beads into a single chip platform. In the first system, three modules were integrated including a microfluidic nodule consists of three sets of novel pneumatic micropumps, a bead collection module with Au wires and a micro temperature control module for the polymerase chain reaction (PCR) process. For the second system proposed, the microfluidic chip integrated two functional devices for bio-samples purification and enrichment including pumping, mixing and separation by utilizing a rotary microfluidic module and a bead-collection module consists of 2-dimension/3-dimension (2-D/3-D) microcoils. The original rotary microfluidic module can provide a rapid flow pumping rate and a high mixing efficiency and can pretreat the bio-samples in a short period of time. The third microsystem uses the novel microfluidic system including a two-way serpentine-shape (s-shape) micropump requiring only one EMV to transport and to mix the bio-samples in the microchannels. In addition, new bio-separators are developed either to perform the separation of magnetic beads or to control the temperature field for the subsequent RT-PCR process. The rapid heating/cooling rate of the micro-heating chambers can significantly shorten the pre-treatment and diagnosis processes. As a whole, the developed system may provide a powerful platform integrating the functions of sample pretreatment and fast disease diagnosis.
Table of Contents
Abstract I
中文摘要 III
致謝 V
Table of Contents VII
List of Tables XII
List of Figures XIII
Nomenclature XXIII
Abbreviation XXVI

Chapter 1: Introduction ….1
1.1 MEMS and microfluidic technology 1
1.2 Background and literature survey 1
1.2.1 Pretreatment of the bio-samples……………………………………………..1
1.2.2 Magnetic beads in biological applications…………………………………..3
1.2.3 Microfluidic system in biological application………………………………4
1.2.4 Micro mixer in bio-reaction……………………………..…………………..5
1.2.5 MEMS-based magnetic bio-separator…………………..…………………...5
1.2.6 Nucleic acid amplification……………………………..………………..…..6
1.3 Motivation and Objectives 7

Chapter 2: Theory and Design …14
2.1 Immunology in biological application 14
2.1.1 Antibody and antigen structure 14
2.1.2 Purification utilizing antibody-conjugated magnetic beads 14
2.2 Overview of the designed miniature micro systems 16
2.2.1 Microfluidic control system 17
2.2.1.1 The principle of pneumatic micropumps and microvalves………...17
2.2.1.2 Membrane activation theory……………………………………….18
2.2.1.3 Design of the on-chip microfluidic module………………………..19
2.2.2 Magnetic bio-separator system 20
2.2.2.1 Theory of magnetic bio-separator………………………..………...21
2.2.2.2 Design of the bio-separator……………………………………..….23
2.3 Nucleic acid amplification technique 23
2.3.1 DNA, RNA and cell lysis 23
2.3.2 Reverse transcription and polymerase chain reaction 25
2.3.3 Design of the micro temperature control module 26
2.3.4 Analysis of slab-gel electrophoresis 28
Chapter 3: Materials and Methods 38
3.1 Materials 38
3.1.1 RNA-based virus preparation 38
3.1.2 DNA-based bacteria preparation 39
3.1.3 Antibody-conjugated magnetic beads preparation 40
3.1.4 Primer design and RT-PCR reagents 40
3.2 Working principle and experimental method 42
3.2.1 RNA/DNA extraction 42
3.2.1.1 Standard RNA/DNA extraction procedures………………………..42
3.2.1.2 Procedures for RNA/DNA extraction from a crude bio-sample…...42
3.2.2 Working principle of the integrated micro systems…………………..…..43
3.2.3 Experimental setup………………………………………….………..…..44
3.2.4 Sample pretreatment utilizing the microfluidic system…….………..…...45

Chapter 4: Fabrication 55
4.1 Overview of the micro fabrication techniques 55
4.2 Formation of the microfluidic control module 56
4.2.1 Substrate cleaning 56
4.2.2 SU-8 mold fabrication 57
4.2.3 PDMS casting 58
4.3 Manufacture of the bio-separator module 60
4.3.1 Glass substrate cleaning 60
4.3.2 2-D bio-separator 61
4.3.3 3-D bio-separator 62
4.4 Fabrication of the micro temperature control module 64
4.4.1 Patterning 64
4.4.2 Metal deposition and lift-off process 65

Chapter 5: Results and Discussion ……76
5.1 Characterization of the microfluidic control module 76
5.1.1 Pumping process using the pneumatic micropump 76
5.1.2 Mixing process using the pneumatic micropump 78
5.2 Characterization of the bio-separator module……………………...79
5.2.1 Magnetic beads collection 79
5.2.2 Magnetic field and temperature 81
5.2.3 Trapping effect 83
5.3 Characterization of the micro temperature control module 83
5.3.1 Thermal cycling of the micro temperature module 83
5.3.2 Temperature uniformity 85
5.4 Biological application 86
5.4.1 Incubation process utilizing the on-chip microfluidic module 86
5.4.2 Purification and detection of RNA-based virus/DNA-based bacteria 88
5.4.3 Specific detection of four serotypes of dengue virus 88
5.4.4 Selectivity of antibody-conjugated magnetic beads 89
5.4.5 Sensitivity of the miniature RT-PCR system 90
5.4.6 Enrichment of the microfluidic system 91
5.4.7 Comparison of magnetic beads with traditional method 92
5.4.8 Comparison between the proposed three types of microfluidic systems 93

Chapter 6: Conclusions and Future Work 108

References 110

Biography 120

Publication lists 121
[1] N. Maluf, “An Introduction to Microelectromechanical Systems Engineering”, Artech House, Boston, 1, 2000.
[2] F. E. H. Tay, “Microfluidics and Bio-MEMS Applications,” Kluwer Academic Publishers, 2002.
[3] D. R. Reyes, D. Lossifidis, P. A. Auroux and A. Manz, “Micro total analysis system Ι: Introduction, theory and technology,” Analytical Chemistry, 74, 2002, 2623-2636.
[4] P. A. Auroux, D. Iossifidis, D. R. Reyes and A. Manz, “Micro total analysis systems II: analytical standard operations and applications,” Analytical Chemistry, 74, 2002, 2637-2652.
[5] T. Vilkner, D. Janasek and A. Manz, “Micro total analysis systems: recent developments,” Analytical Chemistry, 76, 2004, 3373-3385.
[6] P. Grodzinski, R. Liu, J. Yang and M.D. Ward, “Microfluidic system integration in sample preparation chip-sets-a summary,” Proc. of the 26th Annual International Conference of the IEEE EMBS., San Francisco, USA, September 1-5, 2004, 2615-2618.
[7] K. J. Schwab, R. D. Leon and M. D. Sobsey, “Immunoaffinity concentration and purification of waterborneenteric viruses for detection by reverse transcriptase PCR,” Applied and Environmental Microbiology, 62(6), 1996, 2086-2094.
[8] A. J. de Mello and N. Beard, “Dealing with 'real' samples: sample pre-treatment in microfluidic systems,” Lab on a Chip, 3, 2003, 11N-19N.
[9] P. C. H. Li, and D. J. Harrison, “Transport, manipulation and reaction of biological cells on-chip using electrokinetic effects,” Analytical Chemistry, 69, 1997, 1564-1568.
[10] J. Gao, X. F. Yin and Z. L. Fang, “Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip,” Lab on a Chip, 4, 2004, 47-52.
[11] L. C. Waters, S. C. Jacobson, N. Kroutchinina, J. Khandurina, R. S. Foote and J. M. Ramsey, “Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing,” Analytical Chemistry, 70, 1998, 158-162.
[12] E. A. Schilling, A. E. Kamholz and P. Yager, “Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay,” Analytical Chemistry, 74(8), 2002, 1798-1804.
[13] D. Melvile, F. Paul, S. Path, “High gradient magnetic separation of red cells from whole blood,” IEEE Transactions on Magnetics, 11(6), 1975, 1701-1705.
[14] P. A. Liberti and B. P. Feeley, “Analytical and process scale cell separation with bioreceptor ferrofluid and high gradient magnetic separator,” Proc. 119th Meeting of the American Chemical Society, Boston, USA, April 22-27, 1990, 269-289.
[15] S. Roath, A. Smith, J. H. P. Watson, “High-gradient magnetic separation in blood and bone marrow processing,” Journal of Magnetism and Magnetic Materials, 85, 1990, 285-289.
[16] I. Safarik, M. Safarikova, “Overview of magnetic separations used in biochemical and biotechnological applications,” Scientific and Clinical Applications of Magnetic Carriers, New York, Plenum Press, USA, 1997, 323-340.
[17] B. Sinclair, “To bead or not to bead: applications of magnetic bead technology,” The Scientist, 12(13), 1998, 17-28.
[18] S. W. Yeung, I. -M. Hsing, “Manipulation and extraction of genomic DNA from cell lysate by functionalized magnetic particles for lab on a chip applications,” Biosensors and Bioelectronics, 21, 2006, 989-997.
[19] C. H. Ahn, M. G. Allen, W. Trimmer, Y. J. Jun and S. Erramilli, “A fully integrated micromachined magnetic particle separator,” IEEE/ASME Journal of Microelectromechanical Systems, 5(3), 1996, 151-158.
[20] M. A. Hayes, N. A. Polson, A. N. Phayre and A. A. Garcia, “Flow-based microimmunoassay,” Analytical Chemistry, 73(24), 2001, 5896-5902.
[21] M. Fuentes, C. Mateo, A. Rodriguez, M. Casqueiro, J. C. Tercero, H. H. Riese, R. Fern´andez-Lafuente and J. M. Guis´an, “Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA,” Biosensors and Bioelectronics, 21(8), 2006, 1574-1580.
[22] M. Ogiue-Ikeda, Y. Sato and S. Ueno, “A new method to destruct targeted cells using magnetizable beads and pulsed magnetic force,” IEEE Transactions on Nanobioscience, 2(4), 2003, 262-265.
[23] E. L. Lawson1, J. G. Clifton, F. Huang, X. Li, D. C. Hixson and D. Josic, “Use of magnetic beads with immobilized monoclonal antibodies for isolation of highly pure plasma membranes,” Electrophoresis, 27, 2006, 2747-2758.
[24] J. -W. Choi, C. H. Ahn, S. Bhansali and H. T. Henderson, “A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems,” Sensors and Actuators B, 68, 2000, 34-39.
[25] Y. Huang, E. L. Mather, J. L. Bell and M. Madou, “MEMS-based sample preparation for molecular diagnostics,” Analytical and Bioanalytical Chemistry, 372(1), 2002, 49-65.
[26] M. A. M. Gijs, “Magnetic bead handling on-chip: new opportunities for analytical applications,” Microfluidics and Nanofluidics, 1, 2004, 22-40.
[27] T. Vilkner, D. Janasek and A. Manz, “Micro total analysis systems: recent developments,” Analytical Chemistry, 76, 2004, 3373-3385.
[28] P. Grodzinski, R. Liu, J. Yang and M.D. Ward, “Microfluidic system integration in sample preparation chip-sets-a summary,” Proc. of the 26th Annual International Conference of the IEEE EMBS., San Francisco, USA, September 1-5, 2004, 2615-2618.
[29] C. -H. Wang and G. -B. Lee, “Automatic bio-sensing diagnostic chips integrated with micro-pumps and micro valves for multiple disease detection,” Biosensors and Bioelectronics, 21, 2005, 419-425.
[30] C. -H. Wang and G. -B. Lee, “Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels,” Journal of Micromechanics and Microengineering, 16, 2006, 341-348.
[31] H. P. Chou, M. A. Unger and S. R. Quake, “A microfabricated rotary pump,” Biomedical Microdevices, 3, 2001, 323-330.
[32] A. Ajdari, “Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces,” Physical Review E, 53, 1996, 4996-5005.
[33] R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” IEEE/ASME Journal of Microelectromechanical Systems, 9, 2000, 190-197.
[34] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, “Chaotic mixer for microchannels,” Science, 295, 2002, 647-651.
[35] E. Biddiss, D. Erickson and D. Li, “Surface charge enhanced micro-mixing for electrokinetic flows,” Analytical Chemistry, 76, 2004, 3208-3213.
[36] R. B. M. Schasfoort, S. Schlautmann, J. Hendrikse and A. van den Berg, “Field-effect flow control for microfabricated fluidic networks,” Science, 286, 1999, 942-945.
[37] Z. Yang, H. Goto, M. Matsumoto and R. Maeda, “Active micromixer for microfluidic systems using lead- zirconate-titanate (PZT)-generated ultrasonic vibration,” Electrophoresis, 21, 2000, 116-119.
[38] P. K. Dasgupta, K. Surowiec, and J. Berg, “Flow of Multiple Fluids in a Small Dimension,” Analytical Chemistry, 74, 2002, 208A-213A.
[39] P. Paik, V. K. Pamula, M. G. Pollak and B. Fair, “Rapid droplet mixers for digital microfluidic systems,” Lab on a Chip, 3, 2003, 28-33.
[40] J. -L. Lin, K. -H. Lee and G. -B. Lee, “Active micro-mixers utilizing a gradient zeta potential induced by inclined buried shielding electrodes,” Journal of Micromechanics and Microengineering, 16, 2006, 757-768.
[41] H. -Y. Tseng, C. -H. Wang and G. -B. Lee, “Membrane-activated microfluidic rotary devices for pumping and mixing,” Biomedical Microdevices, DOI: 10.1007/s10544-007-9062-6, 2006.
[42] M. C. Breadmore, K. A. Wolfe, I. G. Arcibal, W. K. Leung, D. Dickson, B. C. Giordano, M. E. Power, J. P. Ferrance, S. H. Feldman, P. M. Norris and J. P. Landers, “Microchip-based purification of DNA from biological samples,” Analytical Chemistry, 75, 2003, 1880-1886.
[43] J. -W. Choi, T. M. Liakopoulos, C. H. Ahn, “An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy,” Biosensors and Bioelectronics, 16, 2001, 409-416.
[44] J. -W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. T. Henderson and C. H. Ahn, “An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities,” Lab on a Chip, 2, 2002, 27-30.
[45] P. Grodzinski, J. Yang, R. H. Liu and M. D. Ward, “A modular microfluidic system for cell pre-concentration and genetic sample preparation,” Biomedical Microdevices, 5(4), 2003, 303-310.
[46] Q. Ramadan, V. Samper, D. Poenar and C. Yu, “On-chip micro-electromagnets for magnetic-based bio-molecules separation,” Journal of Magnetism and Magnetic Materials, 281, 2004, 150-172.
[47] Q. Ramadan, V. Samper, D. Poenar and C. Yu, “Fabrication of three-dimensional magnetic microdevices with embedded microcoils for magnetic potential concentration,” IEEE/ASME Journal of Microelectromechanical Systems, 15, 2006, 624-638.
[48] Q. Ramadan, V. Samper, D. Poenar and C. Yu, “Magnetic-based microfluidic platform for biomolecular separation,” Biomedical Microdevices, 8, 2006, 151-158.
[49] Q. Ramadan, V. Samper, D. Poenar and C. Yu, “An integrated microfluidic platform for magnetic microbeads separation and confinement,” Biosensors and Bioelectronics, 21(9), 2006, 1693-1702.
[50] R. K. Saiki, S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich and N. Arnheim, “Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia,” Science, 230, 1985, 1350-1354.
[51] K. B. Mullis, F. Ferre and R. A. Gibbs, “The polymerase chain reaction,” Boston, Birkhauser, USA. 1994.
[52] P. A. Auroux, Y. Koc, A. deMello, A. Manz and P. J. R. Day, “Miniaturised nucleic acid analysis,” Lab on a Chip, 4, 2004, 534-546.
[53] M. A. Northrup, C. Gonzalez, D. Hadley, R. F. Hills, O. Landre, S. Lehew, R. Saiki, J. J. Shinsky, R. Watson and R. Jr. Watson, “A MEMS-based miniature DNA analysis system,” Proceeding of Transducers, 1995, 764-767.
[54] P. Wilding, M. A. Shoffner and L. J. Kricka, “PCR in silicon microstructure,” Clinical Chemistry, 40, 1994, 1815-1818.
[55] P. J. Obeid, T. K. Christopoulos and H. J. Crabtree, “Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection,” Analytical Chemistry, 75, 2003, 288-295.
[56] C. -S. Liao, G. -B. Lee, H. -S. Liu, T. -M. Hsieh and C. -H. Luo, “Micro reverse-transcription polymerase chain reaction system for clinical diagnosis of RNA-based viruses,” Nucleic Acids Research, 33(18), 2005, e156.
[57] C. A. Janeway, Jr., P. Travers, M. Walport and M. Shlomchik, “Immunobiology,” 5th ed., New York, Garland Publishing, USA, 2001.
[58] R. Huber, “Spatial structure of immunoglobulin molecules,” Journal of Molecular Medicine, 58(22), 1980, 1217-1231.
[59] G. B. Pier, J. B. Lyczak and L. M. Wetzler, “Immunology, infection, and immunity,” Washington, DC, ASM Press, USA, 2004.
[60] E. Harlow and D. Lane, “Immunoaffinity purification,” Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press, USA, 1999.
[61] J. R. Whiteaker, L. Zhao, H. Y. Zhang, L. -C. Feng, B. D. Piening, L. Anderson and A. Paulovich, “Antibody-based enrichment of peptides on magnetic beads for mass spectrometry-based quantification of serum biomarkers,” Analytical Biochemistry, 362(1), 2007, 44-54.
[62] C. -W. Huang, S. -B. Huang and G. -B Lee, “Pneumatic micropumps with serially connected actuation chambers,” Journal of Micromechanics and Microengineering, 16, 2006, 2265-2272.
[63] M. Zborowski, L. P. Sun, L. R. Moore, P. S. Williams, J. J. Chalmers, “Continuous cell separation using novel magnetic quadrupole flow sorter,” Journal of Magnetism and Magnetic Materials, 194, 1999, 224-230
[64] H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott, S. L. Zipursky, J. Darnell, “Molecular cell biology,” 5th ed., New York, W. H. Freeman Publishing, USA, 2004.
[65] G. Karp, “Cell and molecular biology: concept and experiments,” 3rd ed., New York, John Wiley & Sons, Inc., USA, 2002.
[66] T. A. Brown, “Gene cloning and DNA analysis: an introduction,” 5th ed., Oxford, Blackwell Publishing, UK, 2006.
[67] W. Whitman, D. Coleman and W. Wiebe, “Prokaryotes: the unseen majority,” Proceedings of the National Academy of Sciences of the United States of America, 95(12), 1998, 6578-6583.
[68] H. Tolou, P. Couissinier-Paris, V. Mercier, M. -R. Pisano, X. de Lamballerie, P. de Micco and J. -P. Durand, “Complete genomic sequence of a dengue type 2 virus from the French west Indies,” Biochemical and Biophysical Research Communications, 277, 2000, 89-92.
[69] Y. C. Lin, C. N. Wu, S. R. Shih and M. S. Ho, “Characterization of a vero cell-adapted virulent strain of enterovirus 71 suitable for use as a vaccine candidate,” Vaccine, 20, 2002, 2485-2493.
[70] K. -J. Huang, S. Y. J. Li, S. -C. Chen, H. -S. Liu, Y. -S. Lin, T. M. Yeh, C. C. Liu and H. -Y. Lei, “Manifestation of thrombocytopenia in dengue-2-virus-infected mice,” Journal of General Virology, 81, 2000, 2177-2182.
[71] J. -J. Yan, I. -J. Su, P. -F. Chen, C. -C. Liu and J. -R. Wang, “Complete genome analysis of enterovirus 71 isolated from an outbreak in Taiwan and rapid identification of enterovirus 71 and coxsackievirus A16 by RT-PCR,” Journal of Medical Virology, 65, 2001, 331-339.
[72] L. M. Prescott, J. P. Harley and D. A. Klein, “Microbiology,” 3rd ed., Wm. C. Brown Publishers, USA, 1993.
[73] K. -J. Huang, Y. -C. Yang, Y. -S. Lin, J. -H. Huang, H. -S. Liu, T. -M. Yeh, S. -H. Chen, C. C. Liu and H. -Y. Lei, “The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection,” The Journal of Immunology, 176, 2006, 2825-2832.
[74] H. Russell, J. A. Tharpe, D. E. Wells, E. H. White and J. E. Johnson, “Monoclonal antibody recognizing a species-specific protein from Streptococcus pneumoniae,” Journal of Clinical Microbiology, 28(10), 1990, 2191-2195.
[75] M. W. Cunningham, J. M. McCormack, L. R. Talaber, J. B. Harley, E. M. Ayoub, R. S. Muneer, L. T. Chun and D. V. Reddy, “Human monoclonal antibodies reactive with antigens of the group A Streptococcus and human heart,” The Journal of Immunology, 141(8), 1988, 2760-2766.
[76] P. -Y. Shu, S. -F. Chang, Y. -C. Kuo, Y. -Y. Yueh, L. -J. Chien, C. -L. Sue, T. -H. Lin and J. -H. Huang, “Development of group- and serotype-specific one-step SYBR Green I-based real-time reverse transcription-PCR assay for dengue virus,” Journal of Clinical Microbiology, 41(6), 2003, 2408-2416.
[77] S. H. Gillespie, C. Ullman, M. D. Smith and V. Emery, “Detection of S. pneumoniae in sputum samples by PCR,” Journal of Clinical Microbiology, 32, 1994, 1308-1311.
[78] P. -R. Hsueh, J. -J. Wu, P. -J. Tsai, J. -W. Liu, Y. -C. Chuang, K. -T. Luh, “Invasive Group A streptococcal disease in Taiwan is not associated with the presence of streptococcal pyrogenic exotoxin genes,” Clinical Infectious Diseases, 26, 1998, 584-589.
[79] Data sheet for NANO™ SU-8 negative tone photoresists formulations 2-25, released by MICRO-CHEM. Corp.
[80] Data sheet for NANO™ SU-8 negative tone photoresists formulations 50 & 100, released by MICRO-CHEM. Corp.
[81] C. H. Ahn, Y. J. Kim and M. G. Allen, “A fully integrated planar toroidal inductor with a micromachined nickel-iron magnetic bar,” IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, 17, 1994, 463-469.
[82] J. Wu, V. Quinn and G. H. Bernstein, “Powering efficiency of inductive links with inlaid electroplated microcoils,” Journal of Micromechanics and Microengineering, 14, 2004, 576-586.
[83] J. Y. Parky and M. G. Allen, “Development of magnetic materials and processing techniques applicable to integrated micromagnetic devices,” Journal of Micromechanics and Microengineering, 8, 1998, 307-316.
[84] C. S. Lee, H. Lee and R. M. Westervelt, “Microelectromagnets for the control of magnetic nanoparticles,” Applied Physics Letters, 79, 2001, 3308-3310.
[85] K. -Y. Lien, W. -C. Lee, H. -Y. Lei and G. -B. Lee, “Integrated reverse transcription polymerase chain reaction systems for virus detection,” Biosensors and Bioelectronics, 22(8), 2007, 1739-1748.
[86] K. -Y. Lien, J. -L. Lin, C. -Y. Liu , H. -Y. Lei and G. -B. Lee, “Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system,” Lab on a Chip, 7(7), 868-875, 2007.
[87] W. -C. Lee, K. -Y. Lien, G. -B. Lee and H. -Y. Lei, “An integrated microfluidic system using magnetic beads for virus detection,” accepted for publishing, Diagnostic Microbiology and Infectious Disease, 2007.
[88] K. -Y. Lien, W. -Y. Lin, Y. -F. Lee, C. -H. Wang, H. -Y. Lei and G. -B. Lee, “Microfluidic system integrated with sample pretreatment device for fast nucleic acid amplification,” in revision, IEEE/ASME Journal of Microelectromechanical Systems, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊