跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李冠餘
研究生(外文):Kuan-Yu Lee
論文名稱:Sol-gelTiO2多元化生醫感測器之研究
論文名稱(外文):Study on TiO2 multi-function biomedical sensors by using Sol-gel method
指導教授:孫台平
指導教授(外文):Tai-Ping Sun
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:生物醫學科技研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:66
中文關鍵詞:延伸式閘極場效電晶體溶膠-凝膠法酵素場效電晶體循環伏安法差動輸入電流式量測
外文關鍵詞:EGFETSol-gel methodEnFETCyclic voltammetryDifferential current input measurement
相關次數:
  • 被引用被引用:1
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:2
本論文主要研究目的為製作一延伸式閘極場效電晶體 (EGFET)之電壓式酸鹼感測元件,以及電流式尿酸生物感測器,並分析及探討其特性。
感測薄膜方面,選擇網版印刷碳電極以及氧化銦錫玻璃基版兩種材質,並以溶膠凝膠法製備二氧化鈦薄膜進行實驗量測,其線性範圍內之靈敏度分別為53mV/pH及48mV/pH,而加大感測面積之量測可提升其線性度與量測範圍並縮短其響應時間至5秒以下,但缺點為其靈敏度會有些許降低。尿酸之酵素固定化方式為物理性固定技術之膠體包埋法,將尿酸生物酵素物質包覆於二氧化鈦感測膜上,使其形成生物酵素薄膜,並對專一特定之生物物質進行氧化還原反應,再利用延伸式閘極場效電晶體(EGFET)原理,製成酵素場效電晶體 (EnFET),並利用循環伏安儀進行掃瞄分析其氧化還原機制,確保無中間產物之影響。其次,本論文於電壓式酸鹼量測,使用低成本、面積小、製程容易之網版印刷Ag/AgCl取代市售參考電極,其靈敏度為48mV/pH且線性度佳,並於電流式尿酸量測部份,結合酸鹼感測元件進行差動輸入電流式電路量測,降低複雜的背景環境影響,而碳基版及氧化銦錫基版之靈敏度於0mg/dl~12mg/dl分別為344nAcm-2(mgdl)-1及212nAcm-2(mgdl)-1,相較各國論文,皆有不錯之響應特性。
In this thesis, we developed an extended gate field effect transistor’s (EGFET) voltammetric pH sensor and amperometric biosensor for uric acid, and analyzes its characteristics.

In our experiment, screen-printed carbon electrode and glass indium tin oxide electrode were used, and the membrane for the use of our research was prepared by the sol-gel method, and the sensitivity of each under the linear measuring range was 53 mV/pH and 48mV/pH. By expanding the sensing area higher can increase linearity、measurable ranges and shorten the response time below 5 seconds, but there will be a slight drop of its sensitivity. Nevertheless, by using the principle of EGFET we build up the enzyme sensitive field effect transistor (ENFET) which the biomedical uricase membrane was coated onto the TiO2 film by using physical immobilization – Gel entrapment, and the enzyme membrane can only redox to certain substances which will be scanned and analyzed by cyclic voltammetry and make sure there is no intermediate.

Additionally in this thesis, screen-printed Ag/AgCl was used to replace the commercial reference electrode on the voltammetric pH sensing with sensitivity 48 mV/pH and fine linearity, due to its advantage of low cost、small dimension and fabrication straightforward. We measured the amperometric signal by using differential current input, which combines pH sensor and the uric acid sensor in order to reduce the affection from background environment. Compared with other papers around the world, we have a fine sensitivity of 344 nAcm-2(mgdl)-1 and 212 nAcm-2(mgdl)-1 on carbon、ITO substrates between concentration 0 mg/dl ~ 12 mg/dl.
中文摘要...........................................................Ⅰ
英文摘要...........................................................Ⅱ
誌謝...............................................................Ⅳ
目錄...............................................................Ⅴ
圖目錄.............................................................Ⅶ
表目錄.............................................................Ⅸ

第一章 緒論.........................................................1
1-1 研究背景........................................................1
1-2 研究目的........................................................3
1-3 研究流程........................................................4

第二章 生物感測器之探討.............................................7
2-1 感測器之演進....................................................7
2-2 ISFET之工作原理.................................................9
2-3 能斯特響應.....................................................11
2-4 EGFET原理......................................................12
2-5 電化學生物感測器...............................................17

第三章 酸鹼感測器之製作與量測......................................20
3-1 生化感測器原理.................................................20
3-2 pH酸鹼感測器之製作.............................................21
3-3 pH酸鹼感測器之儀表放大器量測...................................23
3-4 量測結果與分析.................................................25
3-4-1 0.25cm2小面積之酸鹼量測..................................25
3-4-2 6cm2大面積之酸鹼量測.....................................26
3-4-3 等效時間常數與等效電阻、等效電容值........................29
3-4-4 6cm2大面積之網版印刷參考電極.............................32
3-4-5 溶膠-凝膠TiO2於ITO玻璃基版..............................34
第四章 尿酸(Uric Acid)感測器之製作與量測...........................37
4-1 尿酸簡介.......................................................37
4-2 酵素固定.......................................................38
4-3 尿酸感測器之製作與架構.........................................43
4-3-1 尿酸感測器之製作.........................................43
4-3-2 尿酸感測器之量測分析.....................................45
4-3-3 三極式量測架構...........................................46
4-4 尿酸量測實驗與分析.............................................47
4-4-1 尿酸實驗與分析...........................................47
4-4-2 尿酸差動電流輸入之量測...................................55
4-5 文獻比較.......................................................59

第五章 結論........................................................62
5-1 結論...........................................................62
5-2 未來展望.......................................................63

參考文獻...........................................................64
[1] R.E.G Van Hal, J.C.T. Fijkel, P. Bergveld, A general model to describe the electrostatic potential at electrolyte oxide interfaces, Advances in Colloid and Interface Science 69, (1996) 31-62.
[2]J. Van Der Spiegel, I. Lauks, P. Chen and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe”,Sensors and Actuators B, 4(1983) 291-298.
[3]Wu Shixiang, Yu Dun, Wang Guihua, Study on Ion Selective Field Effect Transistors Chemical Sensors 3, (1990) 56-61.
[4]黃義佑、黃瑞星,“離子選擇性感測元件原理與關鍵技術”,電子月刊第四卷第十二期(1998)十二月號80-88。
[5]Bousse, L., Meindl, J., in: GPMS, ACS Symp, Series, 323 (1986) 79.
[6]Hsien-chieh Chien-chang, “Design and Application of Oxidase Immobilized Electrode”, Institute of Biomedical Engineering, National Cheng Kung University 1994.
[7]李向晴,“電流式葡萄糖感測器暨前置訊號處理之研究”,華梵大學電子工程學系碩士班碩士論文,(2005)。
[8]B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons. Biomaterials Science: An Introduction to Materials in Medicine, 124-130. Academic Press, 1996.
[9]陳治誠, “生化感測器技術簡介” 科儀新知, 15(2):71-81, 1993.
[10]D. R. Lloyd, and C. M. Burns, “Coupling of acrylic polymers and collagen by useof a water-soluble carbodiimide. I.Optimization of reaction conditions” Journal of Polymer Science-Polymer Chemistry Edition, 17: 3459-3472, 1979.
[11]G. F. Bickerstaff, Immobilization of Enzymes and Cells, 1-11. Humana Press Inc.,1996.

[12]劉英俊, 汪金追, 酵素工程, 199-223. ㆗央圖書出版社, 1987.
[13]S. Sano, K. Kato, and Y. Ikada, “Introduction of functional groups onto the surface of polyethylene for protein immobilization” Biomaterials, 14 (11): 817-822, 1993
[14]D. R. Lloyd, and C. M. Burns, “Coupling of acrylic polymers and collagen by useof a water-soluble carbodiimide. Ⅱ: Investigations of the coupling mechanism”Journal of Polymer Science-Polymer Chemistry Edition, 17: 3473-3483, 1979.
[15]M.Lambrechits and W. Sansen, “Biosensors: micro- electrochemical devices”, Institue of physics Publishing, pp. 39-66, 1992
[16]顏嘉妤 “以延伸式閘極感測場效電晶體研製中草藥之小檗鹼感測器” 中原大學醫學工程學系碩士學位論文。
[17]武世香、虞惇、王貴華,”化學量感測器,感測器技術”,第2期 (1992) 51-55。
[18]蘇建雄、吳太光,“網版印刷電極於生物感測器之應用及展望”,化工技術第十卷第8期 (2002)8月號124-138。
[19]Mei-Lin Cheng, “Study and fabrication of amperometric glucose and uric acid sensors”, Institute of Biomedical Engineering, Chung Yuan University 2004
[20]Nien Hsuan Chou, Jung Chuan Chou, Member, IEEE, Tai Ping Sun, and Shen Kan Hsiung “Measurement and Comparison of PotentiometricSelectivity Coefficients of Urea Biosensors Basedon Ammonium Ion-Selective Electrodes” IEEE SENSORS JOURNAL, VOL. 5, NO. 6, DECEMBER 2005
[21]Po-Yen HSU, “Dry-Type Glucose Sensor Array Using MOS structure with HRP+GOD as Catalyzing Layer”Institute of Biomedical technology, National Chi-Nan University.2006
[22]Douglas A. Skoog, F.James Holler, Timothy A.Nieman, “Principles of Instrumental Analysis 5th ed.” Harcourt Asia Pte Ltd.

[23] Z. Gong, Z. Zhang, “A fiber optic biosensor for uric acid based on immobilized enzymes”Anal.Lett.29, vol.5, pp.695-709, 1996.
[24] Shi-Ting Wen “Study on the development and application of an amperometric biosensor for uric acid”, Graduate Institute of Biotechnology, Chinese Culture University 2000.
[25] J.-C.Chen, H.-H. Chung, C.-T. Hsu, D.-M. Tsai, A.s. Kumar, J.-M. Zen, “A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood.” Sen.and Actuat.B pp.364-369, 2005.
[26] E.Miland, A.J.Miranda Ordieres, P.Tunon Blanco, M.R.Smyth,“Poly(o-aminophenol)-modified bienzyme carbone paste electrode for the detection of uric acid”, Talanta, vol.43, pp.785-796, 1996.
[27] Hunor Sántha, Member, IEEE, Róbert Dobay, and Gábor Harsányi, "Amperometric Uric Acid Biosensors Fabricated of Various Types of Uricase Enzymes” IEEE SENSORS JOURNAL, VOL. 3, NO. 3, JUNE 2003
[28] Takahiro Nakaminami, Shin-ichiro Ito, Susumu Kuwabata,Hiroshi Yoneyama,“A Biomimetic phospholipid/Alkanethiolate bilayer immobilizing uricase and an electrode for amperometric determination of uric acid”, Analytica chemistry, vol.71, pp.4278-4283, 1999.
[29] Bergveld P.,IEEE Trans. Biomed. Eng.,BME-17,70 (1970)
[30] http://www.sentron.nl/nieuw/typo3temp/71a060e194.jpg (Sentron Intergrated Sensor Technology)
[31] Chang-Zong Lin “Study of Sol-gel Technology Fabricated TiO2 Film Application to Amperometric Biosensor”, Institute of Electrical Engineering, Hua Fan University 2005
[32] Chien-Yu Sen “Biosorption of heavy metals in the aqueous solution by the immobilized Xanthan gum”, Institute of Chemical Engineering, Chung Yuan University 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top