跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 03:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李曉瑩
研究生(外文):Hsiao-Ying Lee
論文名稱:電子商務在台灣產業結構的擴散:以社會網絡及自我迴歸模型觀點
論文名稱(外文):Diffusion of e-ecommerce in Taiwan's industrial structure: the perspectives of social network analysis and autocorrelation model
指導教授:施信佑施信佑引用關係
指導教授(外文):Hsin-Yu Shih
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:國際企業學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:55
中文關鍵詞:創新擴散電子商務採用社會網絡分析
外文關鍵詞:濡染效果組織特性Innovation diffusionE-commerce adoptionSocial network analysisContagion effectsOrganizational characteristic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:5
由於電子商務的崛起,許多學者紛紛致力於電子商務相關領域的研究。然而,先前的研究大多著眼於組織內部的因素如何影響電子商務採用,較少探討組織外部對於採用決策的影響。因此,本研究試圖將兩者結合,以社會網絡分析及自我迴歸模型探究電子商務在台灣產業擴散的模式。其中,臺灣整體產業包含88個產業分類,其中59個產業歸類為製造業;29個產業則歸納為服務業。除了進行產業內的研究,我們也將台灣整體產業、製造業及服務業做跨產業的比較分析。研究結果發現,在外部的影響方面,電子商務在台灣整體產業的擴散,以凝聚力模型(cohesion model)的效果最為顯著。反之,電子商務在製造產業及服務產業的擴散,則是以結構同位模型(structural equivalence model)為主。此外,在內部的影響方面,台灣整體產業、製造業、服務業對於電子商務採用的決策,皆與自身研發密度有正向且顯著的關係。有別於過往的文獻,本研究透過社會網絡分析及自我迴歸模型的方法,分析電子商務在台灣產業擴散的模式,提供後續研究者另一種創新擴散研究的方向。
Since e-commerce can be considered as an innovation, many scholars have been interested in studying e-commerce related areas. However, former literature mainly focuses on the internal effects of adopting e-commerce, paying scant attention to the influence from external effects. This study not only hinges on the influence of organizational effects but also those of external effects. That is, a social network analysis and an autocorrelation model are employed to identify the situation of diffusion in e-commerce among 88 sectors in Taiwan’s Industrial Structure, then divide the 88*88 matrix into a 59*59 manufacturing matrix and a 29*29 service matrix to perform the comparative analysis. The empirical results of contagion effects show that e-commerce diffusion within Taiwan’s industry is influenced by a cohesion model that differs from the results in manufacturing and service; namely, these two industries are influenced by structural equivalence. The empirical results of organizational effects indicate that only the R&D intensity affects all sectors’ adoptive decisions within each industrial structure. Drawing on a social network analysis and an autocorrelation model, this study outlines a complete methodology for testing the diffusion mechanism, and provides direction on the diffusion of innovation.
Table of Contents

Chapter 1 Introduction 1
1.1 Research Motivations 2
1.2 Research Questions 3
Chapter 2 Literature Review 4
2.1 A Review of Innovation Diffusion studies 4
2.2 Electronic Commence Adoption 5
2.3 Social Network Analysis 6
2.4 Contagion effect 7
2.4.1 Cohesion Model 9
2.4.2 Structural Equivalence 10
2.5 Organizational Characteristics 11
Chapter 3 Methods 14
3.1 Research Hypotheses 14
3.1.1 Cohesion Model 14
3.1.2 Structural Equivalence 15
3.1.3 Comparison 16
3.1.4 Industrial Characteristics 16
3.2 Methodology 17
3.2.1 Cohesion model 19
3.2.2 Structural equivalence model 20
3.2.3 Autocorrelation Model 21
3.3 Data Collection 22
Chapter 4 Result and Finding 23
4.1 Empirical result of Contagion effect 23
4.2 Contagion effect in Taiwan’s Industry 24
4.3 Contagion effect in Manufacturing Industry 26
4.4 Contagion effect in Service Industry 29
4.5 Research Findings 31
4.5.1 Taiwan’s Industry 31
4.5.2 Manufacturing Industry 32
4.5.3 Service Industry 32

4.5.4 Taiwan Industry V.S Manufacturing Industry 33
4.5.5 Taiwan Industry V.S Service Industry 33
4.5.6 Manufacturing Industry V.S Service Industry 34
Chapter 5 Discussion and Conclusion 36
Reference 38
Appendix 42

List of Table

Table 4.1.1 Result of Descriptive Statistics 24
Table 4.2.1 Result of Regression Analysis in Taiwan Industry 25
Table 4.2.2 Result of Local Effects on Taiwan’s Industry 26
Table 4.2.3 Result of Autocorrelation Model in Taiwan Industry 26
Table 4.3.1 Result of Regression Analysis in Manufacturing Industry 28
Table 4.3.2 Result of Local effect in Manufacturing Industry 28
Table 4.3.3 Result of Autocorrelation Model in Manufacturing Industry 29
Table 4.4.1 Result of Regression Analysis in Service Industry 30
Table 4.4.2 Result of Local Effect in Service Industry 30
Table 4.4.3 Result of Autocorrelation Model in Service Industry 31
Table 4.5.1 Regression analysis of sales value between manufacturing and service industry 35
Table 4.2.4 Summary of the result in Taiwan Industry 42
Table 4.3.4 Summary of the result in Manufacturing Industry 43
Table 4.4.4 Summary of the result in Service Industry 44
Table 2 Descriptive Statistics of Taiwan’s sectors. 45
Table 3 產業分類表 50
Reference
1. Barry W(1983)., Network Analysis Some Basic Principles., Sociological Theory 1:155-200
2. Burt,R.S(1983)., Corprate Profits and Cooperation, New York:Academic Press.
3. Burt,R.S(1987)., Social contagion and innovation: cohesion versus structural equivalence., The American Journal of Sociology 92(6):1287-1355
4. Burt,R.S(1982)., Toward a Structural Theory of Action:Network Models of Social Structure, Perception, and Action, New York:Academic Press.
5. Daniel, Elizabeth M.; Grimshaw, David J(2002)., An exploratory comparison of electronic commerce adoption in large and small enterprises. , Journal of Information Technology 17 (3):133-147
6. David Lucking-Reiley; Daniel F. Spulber(2001)., Business-to-Business Electronic Commerce. , The Journal of Economic Perspectives 15(1):55-68.
7. David L. Johnston. (1998), Open network, electronic commerce and the global information infrastructure. , Computer Standards & Interfaces 20pp.95-99
8. Ferguson, Colin; Finn, Frank; Hall, Jason.(2005), Electronic commerce investments, the resource-based view of the firm, and firm market value., International Journal of Accounting Information Systems 6(1) 1, March, pp. 5-29
9. Fareena S., Lillian C(2000)., The adoption of new technology- the case of object-oriented computing in software companies., IEEE Transaction on Engineering Management 47(1).
10. Grover. V., and Goslar. M.D. (1993), The Initiation, Adoption, and Implementation of Telecommunications Technologies in U.S. Organizations. , Journal of Management Information System Spring 10(1):141-163
11. Harkola, J., Greve, A.(1995), Diffusion of technology: cohesion or structural equivalence? , Academy of Management Meeting. Vancouver, Aug. 6-9.
12. Heitzman J.(1990)., information system and development in third world., Information Processing and Management 26(4): 489-502
13. Hsin-Yu Shih(2006)., Contagion effects of electronic commerce diffusion: Perspective from network analysis of industrial structure. Technological Forecasting and Social change (2006).
14. Hubert G., Thomas S. R (1989)., Technology Diffusion:An Empirical Test of Competitive Effects., Journal of Marketing 53:35-49
15. James Y.L., Thong. (1999), An Integrated Model of Information System Adoption in Small Business. , Journal of Management Information System Spring 15(4):187-214
16.John.A.N., Frank M.B.(1987), A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High Technology Products. Management Science 33: 1069-1086
17 Jui Chieh Huang., A Network Approach for The Influences of Social Capital on Knowledge Inflows/Outflows on Innovation and Performance., National Cheng Kung University Institute of International Business(2004).
18. Lal. K. (1999), Determinants of the adoption of Information Technology: a case study of electrical and electronic goods manufacturing firms in India. , Research Policy 28:667–680
19. Leenders,R.Th.A.J. (2002), Modeling social influence through network autocorrelation: constructing the weight matrix. , Social Network .24:21–47.
20. Loughlin, P. (1999)., Viewpoint:E-commerce strengthens supplier’s position, International Journal of Retail Distribution Management 27(2):69-71
21. Mahajan, Muller and Bass(1990)., New Product Diffusion Models in Marketing- A review and Direction for Research. , Journal of Marketing, Vol. 54(1), pp. 1-26
22. M. Kirbach., and C. Schmiedeberg (2006)., Innovation and Export Performance: Adjustment and remaining differences in East and West German manufacturing. SSES annual meeting.
23. Michael K. M., Edward V, M(1977)., Size, Centralization and Organizational Adoption of Innovations., America Sociological Review 42(5):716-725
24. Nagi, E.W.T., Wat, F.K.T.(2002)., A literature review and classification of electronic commerce research, Information & Management 39:415-429
25. Nguyen Ngoc Anh, et. al(2007)., Innovation and Export of Vietnam’s SME Sector.,
UNU-MERIT Conference Version: 15 May 2007
26. Patrick Y. K. Chau., Kar Yan Tam(1997)., Factors Affecting the Adoption of Open Systems An Exploratory Study., MIS Quarterly 21(1):1-24
27. Premkumar. G., and Margaret Roberts.(1999), Adoption of new information technologies in rural small businesses., Omega, Int. J. Mgmt. Sci. 27:467-484
28. Pires, G.D., Aisbett., J(2003)., The relationship between technology adoption and strategy in business-to-business markets:the case of e-commerce , Industrial Marketing Management 32:291-300
29. P. Schumacher , J. Morahan-Martin(2001)., Gender, Internet and computer attitudes and experiences., Computers in Human Behavior 17
30. Peter V. Marsden(1990)., Network data and measurement. , Annual Review of Sociology 16 :435-463
31. P. F. Drucker(1985)., The discipline of innovation, Harvard Business. Review 63(3):67–72
32. Robert G. Fichman. (1992), Information Technology Diffusion: A Review of Empirical Research. , Proceedings of the Thirteenth International Conference on Information Systems, Dallas.
33. Roberto Basile.(2001), Export behavior of Italian manufacturing firms the nineties: the role of innovation., Research Policy 30 :1185–1201
34. Robert C. Feenstra, Tzu-Han Yang, Gary G. Hamilton(1999)., Business groups and product variety in trade- evidence from South Korea, Taiwan and Japan. Journal of International Economics 48(1):71-100
35. Rogers, E.M.(1995)., Diffusion of Innovations, New York:Free Press 15. Sultan, F. and Chan, L(2000)., The Adoption of New Technology: The Case of Object- Oriented Computing in Software Companies., IEEE Transaction on Engineering Management 47(1) :106-126.
36. Serverin and Garth (2001)., Economics and Electronic Commerce., The Journal of Economic Perspectives 15(1):3-12
37. S. Massini, Arie Y. Lewin, T. Numagamic, A. M. Pettigrewd(2002)., The evolution of organizational routines among large Western and Japanese firms., Research Policy 31: 1333–1348
38. Tsao, H.-Y., Lih., H.-C., Lih., C.(2004)., An Investigation of Critical Success Factors in the Adoption of B2BEC by Taiwanese Companies., Journal of American Academy of Business 5:198-202.
39. Thomas.W.V(1996)., Social network thresholds in the diffusion of innovations., Social Networks 18:69-89
40. Vijay Mahojan, Eitan Muller and Frank M. Bass(1990)., New Product Diffusion Models in Marketing- A review and Direction for Research, Journal of Marketing 54(1) :1-26
41. Directorate-General of Budget :http://eng.dgbas.gov.tw/mp.asp?mp=2
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 羅繼成、張鴻全,「資訊安全風險評鑑模式之探討」,新新季刊,第三十四卷,第三期,第46∼54頁,民國九十五年。
2. 蔡重成、 彭家亮 、 敖先義,「從企業營運的觀點探討ISO 27001資訊安全管理系統的產業價值」,品質月刊,第四十三卷,第二期,第67∼70頁,民國九十六年。
3. 楊好,「提高政府績效管理從『平衡計分卡』績效考評制度談起」,人事月刊,第41期,第20∼30頁,民國九十四年。
4. 黃國敏,「績效評估理論與實務:新竹市政府個案研究」,中華人文社會學報,第一期,第56∼82頁,民國九十三年。
5. 黃士銘、張碩毅、蘇耿弘,「企業導入BS7799資訊安全管理系統之關鍵成功因素--以石化產業為例」,資訊管理學報,第十三卷,第二期,第171∼192頁,民國九十五年。
6. 陳燕錫、張中民、李家琪,「績效評估之趨勢--非財務績效衡量值」,今日會計,第85期,第44∼52頁,民國九十年。
7. 李建華,「從平衡計分卡理論談會計教育績效指標之釐訂」,會計研究月刊,第163期,第33∼36頁,民國八十八年。
8. 吳婉瑜,「衡計分卡應用於公部門績效評估之探討--以交通部為案例」,主計月刊,第587期,第35∼47頁,民國九十三年。
9. 余文德、蔡宜靜,「資料包絡分析法應用於評估知識管理效率之初步探討」,中華技術,第70期,第80∼85頁,民國九十五年。
10. 江通儒,「資訊安全管理系統(ISMS)規劃及建置實例探討」,水利,第16期,第317∼333頁,民國九十五年。