跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 13:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉嘉傑
研究生(外文):Chia-Chieh Liu
論文名稱:多維度錯誤更正碼及調變方法應用在三維掃描
論文名稱(外文):Multi-Dimension Error Control Coding and Modulation Design for 3D Scanning
指導教授:鄭文凱鄭文凱引用關係石勝文石勝文引用關係
指導教授(外文):Victor W. ChengSheng-Wen Shih
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:71
中文關鍵詞:三维掃描系統編碼光線圖n-ary codesgrey levels
外文關鍵詞:3D scannercoded light patternn-ary codesgrey levels
相關次數:
  • 被引用被引用:1
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
三維掃描系統被廣泛的應用在各領域之中,如製造業、醫學、遊戲製作上皆可見其蹤跡。本論文注重研發編碼光線圖以及提高三維重建的精確度,近年來文獻上所提出的Hilbert curve(n-ary code中最常見的編碼)可以產生2D及3D的編碼光線圖,此效能可以超越最具代表性的Gray code。
本論文提出一個新的編碼光線圖,取名為〝Space-Filling S curve〞(簡稱S曲線),利用S曲線,我們可以很輕易的產生任意維度的編碼光線圖,而Hilbert curve只能產生2D與3D的編碼光線圖,以下是S曲線的優點。
(1) 在相同的編碼數量下,可以使用較少的編碼光線圖。
(2) 在編碼光線圖中,灰階層比較稀疏,這可以減少雜訊的影響。
實驗結果可以證明此方法可以增加三維掃描的效率與三維重建的準確性。
The 3D scanner technology has been applied in many fields such as manufacturing, medical science, entertainment industry, etc. In this thesis, we propose an approach to improve the accuracy of the 3D reconstructed model and to develope coded light patterns. The Hilbert curve, one of the n-ary codes, which is more efficient than the typical Gray code, has been applied as a basis to generate 2D or 3D coded light patterns.
In this thesis, an approach to generate a robust coded light pattern by modifying the Hilbert curve, “the Space-Filling S curve” (S-Curve in short), is proposed. A coded light pattern in arbitrary dimensions by applying the S-Curve is generated, while the Hilbert curve can only generate 2D or 3D patterns. In addition, The S-Curve has the following advantages by compared with the Hilbert Curve,
(1) Fewer coded light patterns are needed for the S-Curve to generate the same number of code words.
(2) The generated coded light patterns contain sparse intervals of grey levels to achieve the goal of reducing the impact of noises.
Experiment results show that the proposed S-Curve has increased the efficiency of the 3D scanner system and improved the accuracy of the 3D reconstructed model.
致謝 II
論文摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XV
1. 緒論 1
1.1動機與目的 1
1.2文獻探討 1
1.3論文架構 5
2. 三維掃描系統架構及原理 7
2.1系統架構與流程 7
2.1.1主動式三維掃描法及同軸幾何(Epipolar geometry) 8
2.1.2通訊原理與投影雜訊比較以及分析 10
2.2 Gray code與Hilbert curve編碼影像投影法 16
2.2.1 Gray code投影法 16
2.2.2互補影像Gray code投影法 18
2.2.3 Hilbert curve編碼影像投影法 20
2.2.4 Gray code與Hilbert curve投影法的限制 26
3. 提出的三維掃描系統投影法 28
3.1 n-ary互補影像投影法 28
3.1.1互補差值與灰階差值作量化解碼 31
3.1.2正常與互補一同使用Euclidean distance作量化解碼 32
3.1.3 n-ary互補影像投影法之結論 33
3.2灰階層利用內插法解碼法 34
3.2.1利用線性內插產生灰階層 35
3.2.2利用spline內插法產生灰階層 35
3.2.3灰階層利用內插法解碼法之結論 37
3.3任意維度的編碼方法的原理與理論 38
3.3.1編碼與畫素之間的關係 38
3.3.2 Gray code與Hilbert curve編碼的優點 43
3.3.3 Levels數目的上界值 43
3.3.4 Space-filling S curve的編碼方法 46
3.3.5 3D Hilbert curve與3D S curve分析比較 50
3.3.6 Space-filling S curve的變化型態 55
3.3.7變換次序的編碼方法 56
3.3.8任意維度的編碼方法之結論 58
4. 實驗結果與分析比較 60
4.1 Random Sample Consensus (RANSAC) 60
4.2影像投影法之數據比較 60
5. 結論與未來展望 68
參考文獻 70
[1] R.G. Chen, “Complete Object Surface Scanning with Camera Pose Estimation,” Master’s thesis, NCNU, July 2003.
[2] M. Rioux, “Laser range finder based on synchronized scanners,” Applied Optics, Vol. 23, pp.3837-3843,1984.
[3] T. G.. Stahs, F. M. Wahl, “Fast and robust range data acquisition in a low-cast environment,” Proceeding of the ISPRS-Conference: Close-Range Photogrammetry meets Machin Vision, 1395, SPIE, pp.496-503, 1990.
[4] G. Sansoni, S. Corini, S. Lazzari, R. Rosedda, F. Docchio, “3D Imaging based on Gray code light projection : Characterization of the measuring algorithm and development of a measuring system for industrial application,” Applied Optics, Vol. 36, pp.4463-4472, 1997.
[5] V. Srinivasan, H. C. Liu, M. Halioua, “Automated phase-measuring profilometry: A phase mapping approach,” Applied Optics, Vol. 24, pp.185-188, 1985.
[6] G. Sansoni, M Carocci, R Rodella, “3D vision based on the combination of gray code and phase shift light projection: Analysis and compensation of the systematic errors,” Applied Optics, Vol. 36, pp.6565-6573, 1999.
[7] J. Gühring, “Dense 3-D surface acquisition by structured light using off-the-shelf component,” Proceeding of SPIE Photonics West, Videometrics VII, Vol.4309, pp.220-231, 2001.
[8] B. Matei, and P. Meer, ”Optical rigid motion estimation and performance evaluation with bootstrap,” Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1, pp.339-345, 1999.
[9] J. Weng, P. Cohen, M Herniou, “Camera Calibration with distortion models and accuracy evaluation,” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 14, No. 10, pp.965-980, 1992.
[10] R. Hartley, A. Zisserman, “Multiple View Computer Vision,” Cambridge University Press, 2000.
[11] Shu Lin and Daniel J. Costello, Jr, “Error Control Coding: fundamentals and Applications,” Prentice Hall.
[12] Proakis and Salehi, “Communication Systems Engineering,” Prentice Hall.
[13] Jordi Pages, Joaquim Salvi, Rafael Garcia, and Carles Matabosch, “Overview of coded light projection techniques for automatic 3D profiling,” Institut d’Informatica i Applications, University de Girona.
[14] D. Skocaj, A. Leonardis, “Range image acquisition of objects with non-uniform albedo using structured light range sensor,” in: Proceedings of the 15th International Conference on Pattern Recognition, Vol. 1, 2000, pp. 778--781.
[15] A. M. S, E. S. M. Filho, P. C. P. Carvalho and L. Velho, “Coded Structured Light for 3D-Photography: an Overview,” RITA vol. 9(2), pp 203-219.
[16] S.H.Wang, “3-D Surface Acquisition with Non-uniform Albedo Using Structure Light Range Sensor” Master’s thesis, NCNU, January 2007.
[17] C.H. Au, “An Error Correcting Code Approach of Complete Object Surface Scanning with Automatic Camera Pose Estimation,” Master’s thesis, NCNU, July 2004.
[18] C.G. Pang, “A Coding and Modulation Approach of Complete Object Surface Scanning Camera Pose Estimation,” Master’s thesis, NCNU, July 2004.
[19] Eli Horn, Nahum Kiryati, “Toward optimal structured light patterns,” Image and Vision Computing 17(1999)87-97.
[20] Nelson Max, “Visualizing Hilbert curve,” Lawrence Livermore National Laboratory.
[21] M. Unser, A. Aldroubi, and M. Eden, "Polynomial spline signal approximations: Filter design and asymptotic equivalence with Shannon's sampling theorem,"IEEE Trans. Inform. Theory, vol. 38, pp. 1-9, Jan. 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top