跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/01 10:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:文振榮
研究生(外文):Cheng Jung,Wen
論文名稱:IEEE802.16MeshNetworks排程之設計
論文名稱(外文):Design of IEEE 802.16 Mesh Networks Scheduling
指導教授:楊峻權
指導教授(外文):Chun Chuan,Yang
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:41
中文關鍵詞:WiMAX排程meshQoS
外文關鍵詞:WiMAXmesh排程QoS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
隨著Wi-Fi(IEEE 802.11系列)的普及,相對無線與行動網路的使用者與日俱增,因而對品質與服務的要求也越來越高,在新一代的無線網路之中,最熱門的莫過於WiMAX (IEEE 802.16系列),台灣政府也預計在今年開標WiMAX使用頻段執照。隨著研究WiMAX的人增加,瞭解這個新一代無線網路技術的人也逐漸增加,大家所熟知802.16最主要的特性,以提供長距離(30miles)及高速網路(75Mbps),作就為最後一哩(last mile)技術,提供一種新選擇,且建立在過去ATM (Asynchronous Transfer Mode)高速網路的基礎之上,除此之外就是有別於傳統802.11,還提出了差異品質服務(Quality-of-Service),也就是俗稱QoS的概念,期望根據使用者傳送不同類型媒體所需要的服務品質與傳輸速度,來進行資源分配並試圖滿足每位使用者的需求,更進一步充分有效的利用網路的資源。但在IEEE 802.16家族之中,從2004年固定網路的802.16[d]到最新行動網路的版本在2006年版,也就是802.16[e]之中,仍有許多未制定完善之處例如Scheduling Part,另在傳統802.16之中,主要分成兩種建置環境,Mesh與PMP,同時在Mesh mode中提出了集中式與分散式的兩種排程原則。
我們的研究重點分為兩個部分,第一個部分整合之前碩士論文的研究,在802.16 mesh網路使用集中式排程,但路徑選擇(route selection)以分散式排程的走法,傾向選擇最短路徑,同時加入我們所提出的EQ (Expedited Queue)approach,期望針對特別要求較低end-to-end delay的Service Type,提供縮短E2E delay的可行性;第二部分重點在針對QoS實際應用上,來研究PQ (Priority Queue)與WRR (Weighted Round Robin)兩種排程策略的適用性,而實驗結果顯示,在UGS(Unsolicited Grant Service) type上套用EQ,在不影響throughput與signaling cost的狀況下,可以逼近理論上最短的E2E delay值(one frame duration)。另外,研究結果也顯示,使用WRR的排程策略,可以有效避免使用PQ時,BE(Best Effort) type會有Starvation的狀況發生,同時有機會根據不同的Weight值的調整,動態分配不同service type的資源,達到網路資源分配的彈性,以期建立802.16 mesh網路上適合的QoS排程。
IEEE 802.16 is the new wireless standard, and it has some advantages, including wider coverage, higher bandwidth, and QoS supporting. As the new wireless last mile technology, there are two established modes for IEEE 802.16. One is PMP (point to multipoint) another is Mesh, and in this paper we focus on Mesh mode. Traditionally, Mesh has two scheduling modes, centralized and distributed. Based on the previous research, we propose the combined scheduling mode. Time frames are managed by BS (Base Station) centrally, and select the shortest path from source to destination, and implement the Spatial Reuse [8] mechanism.
On the other hand, we want to reduce end-to-end delay of the QoS type UGS (Unsolicited Grant Service). We propose the Expedited Queue to cut down the transmission time. As similar as bypass mechanism, data not transmitted hop by hop, but transmitted to destination in a frame time as possible. We can prove that Expedited Queue reduces a lot of end-to-end delay in our simulation. In this paper, we also compare two different time frame schedulers, PQ (Priority Queue) and WRR (Weighted Round Robin). When mesh network in the heavy load, we find that the low priority type has starvation problem. In our research, simulation results show that WRR is more suitable than PQ in the heavy load, and WRR solves the starvation of low priority type like BE (Best Effort).
章節索引

1. 研究背景與動機__________________________________________________1
2. 文獻總覽________________________________________________________2
2.1 IEEE 802.16 Mesh mode__________________________________________2
2.2 集中式的排程方法_______________________________________________5
2.3 分散式的排程方法_______________________________________________5
2.4 合併式的排程方法_______________________________________________6
2.5 文獻探討_______________________________________________________7
3. 系統架構與Scheduler分析比較___________________________________10
3.1 系統架構______________________________________________________10
3.2 Admission control____________________________________________11
3.3 Expedited Queue架構與方法____________________________________14
3.4 Time frame scheduler policy____________________________________15
4. 實驗結果與分析__________________________________________________17
4.1 實驗環境與演算法_______________________________________________17
4.2 EQ排程實驗與分析______________________________________________21
4.3 EQ排程法之throughput分析_____________________________________28
4.4 Time frame scheduler policy -PQ與WRR__________________________30
4.5 PQ與WRR之throughput分析______________________________________36
5.結論_____________________________________________________________37


圖索引

Figure 1、Mesh network_______________________________________________3
Figure 2、TDD time frame_____________________________________________4
Figure 3、Admission control___________________________________________13
Figure 4、Mesh network topology_______________________________________18
Figure 5、Avg. E2E delay by input load(UGS)_____________________________22
Figure 6、Avg. E2E delay by input load(ertPS)_____________________________23
Figure 7、Avg. E2E delay by input load(rtPS)______________________________24
Figure 8、Avg. E2E delay by input load(nrtPS)_____________________________25
Figure 9、Avg. E2E delay by input load(BE)_______________________________25
Figure 10、Avg. E2E delay by input load(UGS)_____________________________26
Figure 11、Max & Avg. & min delay in different case (UGS input load=0.3)______27
Figure 12、Max & Avg. & min delay in different case (UGS input load=0.9)______28
Figure 13、throughput when total input load 0.3_____________________________29
Figure 14、throughput when total input load 0.6_____________________________29
Figure 15、throughput when total input load 0.9_____________________________30
Figure 16、Avg. E2E delay by input load (UGS)____________________________31
Figure 17、Avg. E2E delay by input load (ertPS)____________________________32
Figure 18、Avg. E2E delay by input load (rtPS)_____________________________32
Figure 19、Avg. E2E delay by input load (nrtPS)____________________________33
Figure 20、Avg. E2E delay by input load (BE)______________________________33
Figure 21、Centralized – Avg. E2E delay by input load (BE)___________________34
Figure 22、Distributed –Avg. E2E delay by input load (BE)___________________35
Figure 23、Combinational –Avg. E2E delay by input load (BE)_________________35
Figure 24、BE throughput when total input load 0.9__________________________36
1.蔡良其,”Cross-Layer QoS Support in the IEEE 802.16 Mesh Network”, 暨南大學資訊工程系碩士論文, Jun. 2006.
2.Sarkies, K.W. ” The bypass queue in fast packet switching” Communications, IEEE Transactions on Volume 39, Issue 5, May 1991 Page(s):766 - 774 Digital Object Identifier 10.1109/26.87139
3.Schwingenschlogl, C.; Dastis, V.; Mogre, P.S.; Hollick, M.; Steinmetz, R.;” Performance Analysis of the Real-time Capabilities of Coordinated Centralized Scheduling in 802.16 Mesh Mode”, Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd Volume 3, 2006 Page(s):1241 - 1245 Digital Object Identifier 10.1109/VETECS.2006.
4.IEEE Std. 802.16-2004, “IEEE Standard for Local and metropolitan area networks--Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” Oct. 2004.
5.Harish Shetiya, and Vinod Sharma, ”Algorithms for Routing and Centralized Scheduling to Provide QoS in IEEE 802.16 Mesh Networks,” Proceedings of the 1st ACM Workshop on Wireless Multimedia Networking and Performance Modeling (WMuNeP 2005), PP.140-149, Oct. 2005.
6.Hung-Yu Wei, Samrat Granguly, Rauf Izmailov and Zygmunt J. Haas, ”Interference-Aware IEEE 802.16 WiMax Mesh Networks,” Proceedings of IEEE 61st Vehicular Technology Conference (VTC 2005-Spring), Vol. 5, PP. 3102-3106, May 2005.
7.Jian Tao, Fuqiang Liu, Zhihui Zeng, and Zhangxi Lin, ”Throughput enhancement in WiMax mesh networks using concurrent transmission,” Proceedings of IEEE International Conference on Wireless Communications, Networking and Mobile Computing, Vol. 2, PP. 871-874, Sept. 2005.
8.Liqun Fu, Zhigang Cao, and Pingyi Fan, ”Spatial reuse in IEEE 802.16 based wireless Mesh networks,” Proceedings of IEEE International Symposium on Communications and Information Technology (ISCIT 2005), Vol. 2, PP. 1358-1361, Oct. 2005.
9.Tsang-Ling Sheu;” ATM LAN interconnections with a cut-through nonblocking switch” Computers and Communications, 1995. Conference Proceedings of the 1995 IEEE Fourteenth Annual International Phoenix Conference on 28-31 March 1995 Page(s):578 - 584 Digital Object Identifier 10.1109/PCCC.1995.472435
10.Mehmet S. Kuran, Birkan Yilmaz, Fatih Alagoz, Tuna Tugcu;” Quality of Service in Mesh Mode IEEE 802.16 Networks”
11.Sun, J.; Yanling Yao; Hongfei Zhu;” Quality of Service Scheduling for 802.16 Broadband Wireless Access Systems”, Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd Volume 3, 2006 Page(s):1221 - 1225 Digital Object Identifier 10.1109/VETECS.2006.
12.Howon Lee; Taesoo Kwon; Dong-Ho Cho; Geunhwi Lim; Yong Chang;” Performance Analysis of Scheduling Algorithms for VoIP Services in IEEE 802.16e Systems” Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd Volume 3, 2006 Page(s):1231 - 1235 Digital Object Identifier 10.1109/VETECS.2006
13.Howon Lee; Taesoo Kwon; Dong-Ho Cho;” An efficient uplink scheduling algorithm for VoIP services in IEEE 802.16 BWA systems” Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th Volume 5, 26-29 Sept. 2004 Page(s):3070 - 3074 Vol. 5 Digital Object Identifier 10.1109/VETECF.2004
14.Naian Liu; Xiaohui Li; Changxing Pei; Bo Yang;” Delay Character of a Novel Architecture for IEEE 802.16 Systems”, Parallel and Distributed Computing, Applications and Technologies, 2005. PDCAT 2005. Sixth International Conference on 05-08 Dec. 2005 Page(s):293 - 296 Digital Object Identifier 10.1109/PDCAT.2005.
15.Haitang Wang; Bing He; Agrawal, D.P.;” Admission control and bandwidth allocation above packet level for IEEE 802.16 wireless MAN” Parallel and Distributed Systems, 2006. ICPADS 2006. 12th International Conference on Volume 1, 12-15 July 2006 Page(s):6 pp. Digital Object Identifier 10.1109/ICPADS.2006.
16.Raha, A.; Malcolm, N.; Wei Zhao;” Hard real-time communications with weighted round robin service in ATM local area networks” Engineering of Complex Computer Systems, 1995. Held jointly with 5th CSESAW, 3rd IEEE RTAW and 20th IFAC/IFIP WRTP, Proceedings., First IEEE International Conference on 6-10 Nov. 1995 Page(s):96 - 103 Digital Object Identifier 10.1109/ICECCS.1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top