跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 15:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄒宜勳
研究生(外文):Yi-Hsun Tsou
論文名稱:射頻MOSFETs的雜訊參數其內含之非本質寄生參數去除之研究,及應用於無線生醫感測系統的開關鍵移接收機/發射機之研究
論文名稱(外文):A Study of Noise-Parameters De-embedding of RF MOSFETs and A Study of OOK Receiver/Transmitter for Wireless Biomedical-sensor System Applications
指導教授:林佑昇林佑昇引用關係
指導教授(外文):Yo-Sheng Lin
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:104
中文關鍵詞:去嵌化接地屏蔽層超寬頻低雜訊放大器開關鍵移接收機/發射機
外文關鍵詞:de-embeddingPGSUWB LNAOOK receiver/transmitter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是由研究主動、被動元件與應用於射頻積體電路和生物醫學之電路設計這兩部份所組成。
第一部份,於研究主動、被動元件上,我們介紹了一種可以得到元件本質特性的去嵌化技巧”open-thru”,此去嵌化方法可以使dummy結構於晶片面積使用上達到最小。我們也提出了中間接地屏蔽層的概念來更進一步地提升螺旋電感之特性。經由量測結果,中間接地屏蔽層架構確實比傳統接地屏蔽層架構來得好,並適用於射頻積體電路上。
第二部份,於應用於射頻積體電路和生物醫學之電路設計上,我們設計了一應用於超寬頻系統之3~5GHz和3~10GHz超寬頻低雜訊放大器並分別使用了中間接地屏蔽層電感與雜訊消除技巧。我們也設計了一應用於生醫感測系統之開關鍵移接收機/發射機並著重於低功耗、小面積上。這些電路都是以台積電 0.18 um 1P6M的互補式金氧半製程實現。
This thesis is mainly composed of two parts which study the active device and passive device and circuit design for RFIC and biomedical applications.
First, in study the active device and passive device, we introduce “open-thru” de-embedding technology which can obtain intrinsic device characteristics. This method can minimize the consumption of chip area for dummy structures. We also propose the concept of “center PGS” to further improve the performance of on-chip spiral inductors. From measurement results, “center PGS” structure indeed better than “traditional PGS” structure and useful for RFIC applications.
Second, in circuit design for RFIC and biomedical applications, we design a 3~5GHz and a 3~10GHz UWB LNA for UWB systems and use “center PGS” inductors and noise-canceling technology, respectively. We also design an OOK receiver and transmitter for biomedical-sensor system and focus on low power consumption and small area. These circuits are implemented in a TSMC 0.18 um one-poly-six-metal (1P6M) CMOS process.
Contents
Chapter 1 Introduction 1
1.1 Introduction 2
1.2 Motivation 2
1.3 Thesis Organization 4

Chapter 2 De-embedding Technology of MOSFETs for RFIC Design 5
2.1 Introduction 6
2.2 Pad Effects in Silicon 12
2.3 De-embedding Technology Methods 10
2.4 Noise Analysis 26
2.5 Unit Width Effects 34
2.6 Measurement Results 38
2.7 Model Parameters Extraction 42
2.8 Conclusion 46

Chapter 3 CPGS Inductor for RFIC Design 47
3.1 Introduction 48
3.2 Loss Mechanisms 49
3.3 Quality Factor 52
3.4 Compact Inductor Model 55
3.5 Center Pattern Ground Shield (CPGS) Inductor 56
3.6 Measurement Results 58
3.7 Conclusion 63

Chapter 4 UWB LNA 64
4.1 Introduction 65
4.2 3~5GHz UWB LNA 67
4.3 3~10GHz UWB LNA 73
4.4 Conclusion 80

Chapter 5 OOK Receiver/Transmitter for Wireless Biomedical-sensor System 81
5.1 Introduction 82
5.2 OOK Transmitter 84
5.3 OOK Receiver 88
5.4 Measurement Results 91
5.5 Conclusion 95

Chapter 6 Conclusion 96

References 99
[1]R. Sung, P. Bendix and M. B. Das, “Extraction of high-frequency equivalent circuit parameters of submicron gate-length MOSFET’s,” IEEE Trans Electron Devices, vol. 45, no. 8, pp. 1769-1775, Aug. 1998.
[2]Y. Cheng and M. Matloubian, ”On the high-frequency characteristics of substrate resistance in RF MOSFETs,” IEEE Electron Device Letters, vol. 21, no. 7, pp. 604-606, July. 2000.
[3]Y. Cheng and M. Matloubian, ”Parameter extraction of accurate and scalable substrate resistance components in RF MOSFETs,” IEEE Electron Device Letters, vol. 23, no. 4, pp. 221-223, Apr. 2002.
[4]A. O. Adan, M. Fukumi, K. Hagashi, T. Suyama, M. Miyamoto and M. Hayashi, “Electromagnetic coupling effects in RFCMOS circuits,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 293-296, June. 2002.
[5]Ming-Dou Ker, Hsin-Chin Jiang and Chyh-Yih Chang, “Design on the Low-Capacitance Bond Pad for High-frequency I/O Circuits in CMOS Technology,” IEEE Transactions on Electron Devices, vol. 48, no. 12, Dec. 2001.
[6]Ming-Dou Ker and Jeng-Jie Peng, “Fully Process-compatible Layout Design on Bond Pad to Improve Wire Bond Reliability in CMOS ICs,” IEEE Transactions on Components and Packaging Technologies, vol. 25, no. 2, June. 2002.
[7]H. Cho and D. Burk, “A three step method for the de-embedding of high frequency S-parameter measurements,” IEEE Trans Electron Device, vol. 38, no. 6, pp. 1371-1375, 1991.
[8]Ewout P. Vandamme, Dominique M. M.-P. Schreurs and Cees van Dinther, “Improved Three-step De-embedding Method to Accurately Account for the Influence of Pad Parasitic in Silicon On-wafer RF Test-structures,” IEEE Transactions on Electron Devices, vol. 48, no. 4, Apr. 2001.
[9]Ming-Hsiang Cho, Guo-Wei Huang, Yueh-Hua Wang and Lin-Kun Wu, “A Scalable Noise De-embedding Technique for On-wafer Microwave Device Characterization,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 10, pp. 649-651, Oct. 2005.
[10]W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, vol. 15, no. 5, pp. 483-490, Aug. 1992.
[11]K. C. Gupta, R. Grag and R. Chada, Computer Aided Design of Microwave Circuits. Dedgam, MA:Artech House, pp. 25-43, 1981.
[12]Ming-Hsiang Cho, Guo-Wei Huang, Kun-Ming Chen and An-Sam Peng, “A novel cascade-based de-embedding method for on-wafer microwave characterization and automatic measurement,” IEEE Microwave Symposium Digest, vol. 2, pp. 1237-1240, June. 2004.
[13]M. H. Cho, C. S. Chiu, G. W. Huang, Y. M. Teng, L. H. Chang, K. M. Chen and W. L. Chen, “A fully-scalable de-embedding method for on-wafer S-parameter characterization of CMOS RF/microwave devices,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 303-306, June. 2005.
[14]R. E. Collin, Foundations for Microwave Engineering, 2nded. New York:McGraw-Hill, 1992.
[15]A. Van Der Ziel, Noise in Solid State Devices and Circuits, Wiley, New York, 1986.
[16]H. A. Haus and R. B. Adler, Circuit Theory of Linear Noisy Networks. New York:Wiley, 1959.
[17]W. B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and Noise. New York:McGraw-Hill, 1958.
[18]H. Hillbrand and P. H. Russer, “An efficient method for computer-aided noise analysis of linear amplifier networks,” IEEE Transactions on Circuits and Systems, vol. CAS-23, no. 4, pp. 235-238, Apr. 1976.
[19]Yo-Sheng Lin, “An analysis of small-signal source-body resistance effect on RF MOSFETs for low-cost system-on-chip (SoC) applications,” IEEE Transactions on Electron Device, vol. 52, pp. 1442-1451, July. 2005.
[20]T. Manku, “Microwave CMOS-Device physics and design,” IEEE Journal of Solid-State Circuits, vol. 34, no. 3, pp. 277-285, Mar. 1999.
[21]I. Bahl and P. Bhartia, Microwave Solid-State Circuit Design, Wiley, New York, 1988.
[22]F. Danneville, B. Iniguez, G. Pailloncy and G. Dambrine, “RF and noise properties of SOI MOSFETs, including the influence of a direct tunneling gate current,” Proceedings of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems, vol. 1, pp. 103-110, Nov. 2004.
[23]G. Pailloncy, C. Raynaud, M. Vanmackelberg, F. Danneville, S. Lepilliet, J. P. Raskin and G. Dambrine, “Impact of downscaling on high-frequency noise performance of bulk and SOI MOSFETs,” IEEE Transactions on Electron Devices, vol. 51, no. 10, pp. 1605-1612, Oct. 2004.
[24]陳炳佑, “三.五族電晶體模型與Ka頻段放大器設計,”國立台灣大學電機工程學研究所碩士論文, 民國91年.
[25]N. Srirattana, D. Heo, H. –M. Park, A. Raghavan, P. E. Allen and J. Laskar, “A new Analytic Scalable Substrate Network Model for RF MOSFETs,” IEEE Microwave Symposium Digest, vol. 2, pp. 699-702, June. 2004.
[26]L. Belostotski and J. W. Haslett, “Noise figure optimization of inductively degenerated CMOS LNAs with integrated gate inductors,” IEEE Transactions on Fundamental Theory and Applications, vol. 53, pp. 1409-1422, July. 2006.
[27]J. Craninckx and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, pp. 736-744, May. 1997.
[28]B. Razavi, “A Study of Phase Noise in CMOS Oscillators,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 331-343, Mar. 1996.
[29]C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE Journal of Solid-State Circuits, vol. 33, no. 5, pp. 743-752, May. 1998.
[30]Jinglin Shi, Wen-Yan Yin, Huailin Liao, and Jun-Fa Mao, “The Enhancement of Q Factor for Patterned Ground Shield Inductors at High Temperatures,” IEEE Transactions on Magnetics, vol. 42, no. 7, July. 2006.
[31]Hsiao-Bin Liang, Yo-Sheng Lin, Chi-Chen Chen and Jen-How Lee, ”Optimization of PGS Pattern of Transformers/Inductors in Standard RF BiCMOS Technology for RFIC Applications,” IEEE Radio Frequency Integrated Circuits Symposium, June. 2006.
[32]Yo-Sheng Lin, ”Temperature and substrate-impedance dependence of noise figure of monolithic RF inductors on silicon” IEEE Electron Device Letters, vol. 26, pp. 397-400, June. 2005.
[33]Yo-Sheng Lin, Chang-Zhi Chen, Hsiao-Bin Liang and Chi-Chen Chen, “High-Performance On-chip Transformers with Partial Polysilicon Patterned Ground Shields (PGS),” IEEE Transactions on Electron Devices, vol. 54, pp. 157-160, Jan. 2007.
[34]Terada, T., Yoshizumi, S., Sanada, Y. and Kuroda, T., “Transceiver circuits for pulse-based ultra-wideband,” Proceedings of the 2004 international Symposium on Circuits and Systems, vol. 4, May. 2004.
[35]A. Tanaka, H. Kodama and A. Kasamatsu, “Low-noise Amplifier with Center Frequency Hoping for an MB-OFDM UWB Receiver,” Joint UWBST & IWUWBS2004, pp. 420-423, May. 2004.
[36]R. Liu, C. Lin, K. Deng and H. Wang, “A 0.5-14GHz 10.6-dB CMOS cascode distributed amplifier,” Symp. VLSI Circuits Dig. 17, pp. 139-140, June. 2003.
[37]S. Andersson, C. Svensson and O. Drugge, “Wideband LNA for a multistandard wireless receiver in 0.18 um CMOS,” Proceedings of the 29th European Solid-State Circuits Conference, pp. 655-658, Sept. 2003.
[38]A. Bevilacqua and A. M. Niknejad, “An ultra-wideband CMOS LNA for 3.1 to 10.6GHz wireless receivers,” IEEE International Solid-State Circuits Conference, pp. 382-383, Feb. 2004.
[39]Sun, B., Fei Yuan, Opal, A., “Inductive peaking in wideband CMOS current amplifiers,” Proceedings of the 2004 International Symposium on Circuits and Systems, vol. 4, pp. 285-288, May. 2004.
[40]F. Bruccoleri, E. A. M. Klumperink and B. Nauta, “Noise canceling in wideband CMOS LNAs,” IEEE International Solid-State Circuits Conference, vol.1, pp. 406-407, Feb. 2002.
[41]Chih-Fan Liao and Shen-Iuan Liu, ”A Broadband Noise-Canceling CMOS LNA for 3.1-10.6GHz UWB Receivers,” IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 329-339, Feb. 2007.
[42]C.-P. Chang and H.-R. Chuang, “0.18 um 3-6GHz CMOS broadband LNA for UWB radio,” Electronics Letters, vol. 41, pp. 696-698, June. 2005.
[43]C.-W. Kim, M.-S. Kang, P. T. Anh, H.-T. Kim and S.-G. Lee, “An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system,” IEEE Journal of Solid-State, vol. 40, no. 2, pp. 544-547, Feb. 2005.
[44]Kuan-Hung Cheng and Chomg-Kuang Wang, “A 3.1-10.6GHz CMOS cascaded two-stage distributed amplifier for ultra-wideband application,” IEEE Asia-Pacific Conference, pp. 296-299, Aug. 2004.
[45]T. G. Zimmerman, “Personal area networks (PAN): Near-Field Intra-Body Communication,” M. S thesis, MIT Media Laboratory, 1995.
[46]T. G. Zimmerman, “Personal area networks:Near-field intrabody communication,” IBM Systems Journal, vol. 35, no. 3-4, pp. 609-617, 1996.
[47]曾智偉, “應用於無線生醫的整合晶片,”國立台灣大學電子工程學研究所碩士論文, 民國95年.
[48]H. Yu and K. Najafi, “Low-Power Interface Circuits for Bio-Implantable Microsystems,” IEEE International Solid-State Circuits Conference, vol.1, pp. 194-487, 2003.
[49]Y. T. Lin, T. Wang and S. S. Lu, “A 0.5V 3.1mW Fully Monolithic OOK Receiver for Wireless Local Sensor Network,” IEEE Asia Solid-State Circuits Conference, Taipei, Taiwan, pp. 373-376, Nov. 2005.
[50]D. Roddy and J. Coolen, Electronic Communications, pp. 272-276. Englewood Cliffs, NJ:Prentice-Hall, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 10. 沈麗玉,公平交易法對域外結合之規範簡介—以「公平交易委員會域外結合案件處理原則」為核心,公平交易季刊第8卷第4期,2000年10月。
2. 9. 沈嘉信,策略聯盟為購併開路,天下雜誌第216期,1999年5月。
3. 8. 吳桂茂,子公司買回母公司股票及交叉持股問題探討,實用稅務,1999年1 月。
4. 7. 吳成物,競爭法對企業購併行為之規範,月旦法學雜誌第68期,2001年1月。
5. 3. 王文宇,企業併購法總評,月旦法學,2000 年4 月。
6. 5. 王志誠,企業併購法制與控股公司之創設,月旦法學雜誌第14期, 2000年9月。
7. 4. 王志誠,日本企業併購法律規範之研究(下),法律評論第57卷第9期, 1991年10月。
8. 2. 王文宇,我國公司法購併法制之檢討與建議-兼論金融機構合併法,月旦法學雜誌第68期,2001年1月。
9. 1. 王文宇,世界主要國家併購相關法律規定之比較,經濟情勢暨評論第4卷第2期,1998年8月。
10. 12. 林仁光,公司合併與收購之法律規範,萬國法律第105期,1999年6月。
11. 13. 林江峰,「我國銀行合併法律問題之研析」,經社法制論叢第25期, 2000年1月。
12. 15. 林惠文,從美國併購風潮看台灣銀行產業之發展,商管科技季刊第1卷第4期,2000年。
13. 16. 高靜遠,公司法上法人股東代表人人數之規範探討,月旦法學第79 期,2001 年12 月。
14. 17. 陳紫雲,美國稅法對公司併購之有關規定,財稅研究第23卷第2期,1999年3月。
15. 24. 黃馨慧,企業購併與勞動契約,律師雜誌第252期,2000年9月。