跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃志偉
研究生(外文):Jhih-Wei Huang
論文名稱:單連桿撓性機械手臂之非線性遞回步階控制
論文名稱(外文):Nonlinear Backstepping Control of a Single-Link Flexible Robotic Manipulator
指導教授:林容杉
指導教授(外文):Jung-Shan Lin
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:59
中文關鍵詞:單連桿撓性機械手臂遞回式步階控制設計設模法
外文關鍵詞:A single-link flexible robotic manipulatorBackstepping control designAssumed modes method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:0
近年來,撓性機械手臂已被廣泛應用在現代工業裡,高生產力需具備能高速移動、高精確度、低功率消耗和能承受不同負載的機械手臂。所以,機械手臂之結構逐漸朝向具有彈性及輕量化發展。本論文中將利用非線性遞回步階設計法則設計單連桿撓性機械手臂末端位置軌跡追蹤的控制器。並且,一無限維度的撓性臂數學模型將透過設模法(Assumed modes method)和拉格朗日方程式(Lagrange formulation)被得到。在設計過程中,由於分析非線性系統是複雜及困難的,所以一開始我們先分析線性化模型以便了解非線性系統的動態行為與特性。然而,我們將透過數學分析證明零動態的穩定性。也就是說,設計的控制器不僅能使系統達到穩定,並能夠使手臂之軌跡追蹤誤差及末端因振動產生的偏移量收歛到零。經初步分析,遞回式步階設計法則已成功用於線性系統,因此,此設計概念將被拓展到非線性系統。最後由模擬證明我們的設計法則在撓性機械手臂上擁有出色的效能。
At present, lots of flexible manipulators are commonly utilized in modern industry. In the manufacturing industry, higher productivity needs to have manipulators that can operate with higher speed, more precision, less power consumption, lower cost and improved payload handing capabilities. These requirements translate into manipulators that must have structural flexibility and be lightweight. In this thesis, the backstepping design scheme is developed for the tip-position trajectory tracking control of single-link flexible robotic manipulator systems. An infinite dimensional dynamic model of a single-link flexible manipulator is derived through the assumed modes method (AMM) associated with Lagrange approach. In the procedure of backstepping design, the analysis of this nonlinear system is complex and difficult for control design. Therefore, in the first instance a linearized system model will be investigated so that the behavior of this nonlinear system can be further understood. In the procedure of analysis, the zero dynamics will be utilized to prove the stability of closed-loop system by Routh stability criterion. That is to say, the proposed backstepping controller is not only to stabilize the flexible robotic manipulator, but also to drive the trajectory tracking errors and tip-deflection to converge to zero asymptotically. In preliminary analysis, the feasibility of backstepping control scheme is verified in linear system. Therefore, the concept of linear backstepping will be expanded to nonlinear system. Furthermore, some simulation results are given to illustrate the excellent performance of the backstepping control design applied to a single-link flexible robot arm.
Contents
Abstract i
Contents iii
List of Tables iv
List of Figures vi
1 Introduction 1
1.1 Background and History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2 System Model and Dynamics . . . . . . . . . . . . . . . . . . . . . . . .5
2.1 Description of a Single-Link Flexible Manipulator . . . . . . . . . . . . . . . . . . .6
2.2 Natural Frequency and Mode Shape . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.3 Lagrangian Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3 Backstepping Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.1 Linearized System . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.2 Backstepping Design for Linear System . . . . . . . . . . . . . . . . . . . . . . . . . .20
3.3 Linear Backstepping with New Regulated Variable . . . . . . . . . . . . . . . . . . . . .22
3.4 Linear Backstepping in General Case . . . . . . . . . . . . . . . . . . . . . . .25
3.5 Backstepping Design for Nonlinear System . . . . . . . . . . . . . . . . . . . . . .27
4 Comparative Simulations . . . . .. . . . . . . . . . . . . . . . . . . . .30
4.1 Simulations of Linearized System . . . . . . . . . . . . . . . . . . . . . . . . . .30
4.2 Simulations of Nonlinear System . . . . . . . . . . . . . . . . . . . . . . . . . .32
5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . .46
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . .47
[1] B. Paden, D. Chen, R. Ledesma, and E. Bayo, “Exponentially Stable Tracking Control for Multijoint Flexible-Link Manipulators,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 115, pp. 53-59, Mar. 1992.
[2] T. C. Yang, C. S. Jackson and P. Kudva, “Adaptive control of a single-link flexible manipulator with unknown load,” IEE Proceedings-Control Theory and Applications, Vol. 138, pp. 153 -159, Mar, 1991.
[3] S. S. Ge, T. H. Lee and G. Zhu, “Tip Tracking Control of a Flexible Manipulator Using PD Type Controller,”Proceedings of IEEE International Conference on Control Applications, pp. 309-313, 1996.
[4] H. Geniele, R. V. Patel and K. Khorasani, “End-Point Control of a Flexible-Link Manipulator: Theory and Experiments,” IEEE Transactions on Control System Technology, Vol. 5, No. 6, pp. 556-570, 1997.
[5] S. Thomas and B. Bandyopadhyay, “Position Control of Single Link Flexible Manipulator by Variable Structure Model Follow-ing Control,” ASME Journal of Dynamic System, Measurement, and Control, Vol. 119, pp. 330-335, 1997. [6] D. Karandikar and B. Bandyopadhyay, “Sliding Mode Control of Single Link Flexible Manipulator,” Proceedings of IEEE International Conference on Industrial Technology, Vol. 1, pp. 712-717, Jan. 2000.
[7] A. Etxebarria, A. Sanz and I. Lizarraga, “Control of a Lightweight Flexible Robotic Arm Using Sliding Modes,” International Journal of Advanced Robotic Systems, Vol. 2, pp. 103-110, No. 2, 2005.
[8] S. S. Ge, T. H. Lee and G. Zhu, “A Nonlinear Feedback Controller for a Single-Link Flexible Manipulator Based on a Finite Element Model,” Journal of Robotic System, Vol. 14, No. 3, pp.165-178, 1997.
[9] S. Dong and J. K. Mills, “Combined PD Feedback and Distributed Piezoelectric-Polymer Vibration Control of a Single-Link Flexible Manipulator,” Proceedingsof IEEE International Conference on Intelligent Robots and Systems, Vol. 1, pp. 667-672, Oct. 1998.
[10] T. H. Lee, Z. P. Wang and S. S. Ge, “Gain Adaptive Nonlinear Feedback Control of Flexible SCARA/Cartesian Robots,” Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Vol. 2, pp. 1423-1428, July, 2003.
[11] A. Mannani and H. A. Talebi,“TS-Model-Based Fuzzy Tracking Control for a Fingle-Link Flexible Manipulator,” Proceedings of IEEE Conference on Control Applications, Vol. 1, pp. 374-379, June, 2003.
[12] A. Shawky, A. Ordys and M. J. Grimble, “End-Point Control of a Flexible-Link Manipulator Using H Nonlinear Control via a State Dependent Riccati Equation,” Proceedings of the 2002 IEEE International Conference on Control Applications, Vol. 1, pp.501-506, Sept. 2002.
[13] H. R. Pota, “A Prototype Flexible Robot Arm-an Interdisciplinary Undergraduate Project,” IEEE Transactions on Education, Vol. 35, pp. 83-89, Feb. 1992.
[14] Y. Aoustin, C. Chevallereau, A. Glumineau and C. H. Moog, “Experimental Results for the End-Effector Control of a Single Flexible Robotic Arm,”IEEE Transactions on Control Systems Technology, Vol. 2, pp. 371-381, Dec. 1994.
[15] D.Wang, Y. Lu, Y. Liu and X. Li, “Dynamic Model and Tip Trajectory Tracking Control for a Two-Link Flexible Robotic Manipulator,” Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Vol. 2, pp. 1020-1024, Oct. 1996.
[16] M. Dogan, Y. Istefanopulos and E. D. Diktas, “Nonlinear Control of Two-Link Flexible Arm with Adaptive Internal Model,” Proceedings of the IEEE International Conference on Mechatronic, pp. 292-298, June, 2004.
[17] H. Yang, J. Hong and Z. Yu, “Dynamics Modelling of a Flexible Hub Beam System with a Tip Mass,” Journal of Sound and Vibration, pp. 759-774, 2003.
[18] D. Wang and M. Vidyasagar, “Transfer Functions for a Single Flexible Link,” Proceedings of IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1042-104, May, 1989.
[19] V. V. Korolov and Y. H. Chen, “Robust Control of a Flexible Manipulator Arm,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 1, pp. 159-164. 1988.
[20] Y. Sakawa, F. Matsuno and S. Fukushima, “Modeling and Feedback Control of a Flexible Arm,” Journal of Robotic Systems, Vol. 2, No. 4, pp. 453-472, 1985.
[21] F.-K. Tsai and J.-S. Lin, “Nonlinear Control Design for 360-Degree Inverted Pendulum Systems” Proceedings of the Fourth International Conference on Control and Automation(ICCA’03), Montreal, Canada, June, 2003, pp.634-638.
[22] J.-S Lin and C.-J. Huang, “Nonlinear Backstepping Design of Half-Car Active Suspension Systems,” International Journal of Vehicle Design, Vol. 33, No. 4, pp. 332-350, 2003.
[23] C.-J. Huang and J.-S. Lin, “Nonlinear Active Suspension Design for Half-Car Models,” Proceedings of the 2002 International Conference on Control and Automation, Xiamen, P.R. China, June, 2002, pp. 1436-1440.
[24] J.-S. Lin and W.-E. Ting, “Nonlinear Backsteeping Design of Anti-Lock Braking System with Assistance of Active Suspension,” IET Control Theory and Applications., Vol. 1, No. 1, Jan. 2007.
[25] Y.-C. Fu and J.-S. Lin, “Nonlinear Backstepping Control Design of the Furuta Pendulum,”Proceedings of the 2005 IEEE Conference on Control Applications Aug. 2005, pp.96-101.
[26] S.-S. Ke and J.-S. Lin, “Sensorless Speed Tracking Control with Backstepping Design Scheme for Permanent Magnet Syschronous Motors,” Proceedings of the 2005 IEEE Conference on Control Applications, Aug. 2005, pp. 487-492.
[27] F.-S. Chen and J.-S. Lin, “Nonlinear Backstepping Design of Robot Manipulators with Velocity Estimation Feedback,” Proceedings of the 5th Asian Control Conference, Vol. 1, pp. 351-356, July, 2004.
[28] H. K. Khalil, Nonlinear Systems, 3rd ed., Upper Saddle River, NJ: Prentice-Hall, 2002.
[29] M. Krsti´c, I. Kanellakopoulos and P. V. Kokotovic, Nonlinear and Adaptive Control Design, New York, NY: John Wiley and Sons, 1995.
[30] J. M. Martins, Z. Mohamed, M. O. Tokhi, J. S´a da Costa and M. A. Botto, ”Approaches for Dynamic Modeling of Flexible Manipulator Systems,” IEE Proceeding-Control Theory and Applications, Vol. 150, No. 4, July, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top