跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡嘉偉
研究生(外文):Jia-Wei Hu
論文名稱:全車主動式懸吊系統之非線性遞迴步階控制設計
論文名稱(外文):Nonlinear Control of Full-Vehicle Active Suspensions with Backstepping Design Scheme
指導教授:林容杉
指導教授(外文):Jung-Shan Lin
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:83
中文關鍵詞:主動式懸吊系統非線性遞迴步階設計全車模型乘坐舒適度懸吊移動距離
外文關鍵詞:Active Suspension SystemsNonlinear Backstepping DesignFull-Vehicle ModelRide QualitySuspension Travel
相關次數:
  • 被引用被引用:2
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
由於近幾年來高科技產業與汽車工業的蓬勃發展,愈來愈多新的科技技術被應用到車輛的設計上。因此,以舒適安全性設計為考量的主動式懸吊系統,已成為各類高級車種的研究發展目標。在設計汽車的懸吊系統時,一個主要的雙重目標是既要減少傳送到乘客座的垂直作用力來增進乘坐的舒適度,另外一方面也需要增加車輪與路面的接觸藉此增進汽車的操控性與安全性。因此,在考慮主動式懸吊系統的設計時,就必須解決多個存在控制目標的衝突及無法完全妥協的情形-車體移動量( body motion )、乘坐舒適度( ride quality )、路面操控性能( road handling )、懸吊移動距離( suspension travel )。本文主要是將主動式懸吊運用在全車系統的控制設計,並利用非線性遞迴步階控制設計( nonlinear backstepping design )來達到控制目的。藉此能夠有效的改善乘坐舒適度與懸吊移動距離之間無法同時改善的衝突。乘座舒適度與車體的垂直位移和角度位移密切的關係,所以主動式懸吊的控制器必須有能力減少路面傳達到車體的垂直位移與角度位移量。懸吊移動距離即車體與車輪之間的相對位移,為了避免懸吊系統碰撞到車體,所以控制器必須有能力避免懸吊移動超過其最大限制進而產生更大的不舒適感。由於此種新的方法使用了一種比較特別的非線性濾波器( nonlinear filter ),而此種濾波器的有效頻寬會隨著懸吊移動距離的大小來改變,所以在控制器中加入此種非線性特性,能夠有效的調節懸吊系統的彈性特徵,換句話說,就可以很平順的轉移兩個具有衝突性的控制目標-乘坐舒適度與懸吊移動限制。
In recent years, due to the prosperous developments of high technologies and automobile industries, lots of new technologies are applied in the design of vehicles. Therefore, the comfortable security design for active suspension system has become the researchful goal of all kinds of advanced car. The dual objective is to minimize the vertical forces transmitted to the passengers for improving the ride quality and to maximize the tire-to-road contact for enhancing the handling performance and driving safety, when designing the automotive vehicle suspension. In the design of vehicle suspension systems, the various performance parameters which should be considered are given as follows: body motion, ride quality, road handling and suspension travel. This thesis develops a novel nonlinear backstepping design for the control of full-vehicle active suspension systems to improve the conflicting objectives which are inherent tradeoff between ride quality and suspension travel. Suspension travel means the space variation between body and tire. In order to avoid the suspension hits the vehicle body, the controllers must have the ability to prevent the suspension form hitting its travel limitation. The novelty is in use of nonlinear filter whose effective bandwidth depends on the magnitudes of suspension travel. Therefore, this kind of design allows the close-loop system with the ability to execute in different operating regions. In other words, the nonlinear controller can smoothly transfer its priority between the conflicting objectives of ride comfort and suspension travel.
英文目次
Abstract i
Contents iv
List of Tables v
List of Figures xi
1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Literature Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 System Model and Analysis 6
2.1 System Model and Dynamics . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Backstepping Control Design 15
3.1 Direct Backstepping Design . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Backstepping Design with Oscillatory Elimination . . . . . . . . . . . 18
3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Backstepping Design with Linear Filter 34
4.1 Linear Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Active Suspension Design . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5 Backstepping Design with Nonlinear Filter 55
5.1 Nonlinear Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Active Suspension Design . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6 Conclusions and Future Works 77
Bibliography
[1] L. R. Miller, “Tuning Passive ,Semi-Active, and Fully Active Suspension System,”
IEEE Proceedings of the 27th Decision and Control, pp.2047-2053, Jun.
1988.
[2] J. J. H. Paulides, L. Encica, E. A. Lomonova and A. J. A. Vandenput,“Design
Considerations for a Semi-Active Electromagnetic Suspension System,” IEEE
Transactions on Magnetics, Vol. 42, pp.3446 - 3448, Oct. 2006.
[3] H. R. O’Neill and G. D. Wale, “Semi-Active Suspension Improves Rail Vehicle
Ride,” Journal on Computing and Control Engineering, Vol 5, pp.183-188, Aug.
1994.
[4] C. Y. Tang and T. Zhang, “The Research on Control Algorithms of Vehicle Active
Suspension Systems,” IEEE International Conference on Vehicular Electronics
and Safety, pp.320-325, Oct. 2005.
[5] D. Karnopp, “Passive and Active Suspension Control of the Road Vehicle Heave
and Pitch Motion, ” IFAC 10th Triennal World Congress, pp.183-188.
[6] C. Yue, T. Butsuen and J. K. Hedrick, “Alternative Control for Automotive Active
Suspensions,” ASME Journal of Dynamic Systems Measurement and Con-
trol, 1989.
[7] J. Campos, L . Davis, F. L. Lewis, S. Ikenaga, S. Scully and M. Evans, “Active
Suspension Control of Ground Vehicle Heave and Pitch Motions,” IEEE Proceed-ings of The 7th IEEE Mediterranean Conference on Control and Automation,
pp.222-233, June 1999.
[8] E. Esmailzadeh and H. Bateni, “Optimal Active Vehicle Suspensions with Full
State-Feedback Control,” SAE Transactions on Journal of Commercial Vehicles,
pp.495-508, 1992.
[9] E. Esmailzadeh and H. D. Taghirad, “State-Feedback Control for Passenger Ride
Dynamics,” Transactions of the Canadian Society for Mechanical Engineering,
pp.495-508, 1995.
[10] E. Esmailzadeh and H. D. Taghirad, “Active Vehicle Suspensions with Optimal
State-Feedback Control,” International Jorunal of Mechanical Science, pp.137-
151, Jun, 1996.
[11] N. Yagiz, R. I. Chalasani and G. Rizzoni, “Sliding Mode Control of Active Suspension
for the Half-Vehicle Model,” IEEE Proceedings of 23th on American
Control Conference, Vol.55, pp. 701-705, San Francisco CA, 1993.
[12] D. Martinus, B Soenarko and Y. Nazaruddin, “Sliding Mode Control Design
with Preview for active Suspension on a Half-Vehicle Model,” IEEE Proceedings
of the 35th on Decision and Control Conference, Vol.3, pp.2798-2803, 1996.
[13] S. B. Choi, Y. T. Choi and D. W. Park, “A Sliding Mode Control of a Full-
Car Electrorheological Suspension System Via Hardwar in-the-Loop Simulation,”
International Journal of Vehicle Design Vol. 122, pp.114-121, Mar. 2000.
[14] Y. M. Sam and N. Ahmad, “LQR Controller for Active Car Suspension System,”
IEEE Proceedings of the 2000 International Conference on Control Applications,
Vol.1, pp.441-444, Sept. 2000.
[15] H. D. Taghirad and E.Esmailzadeh, “Automobile Passenger Comfort Assured
Through LQG/LQR Active Suspension,” Journal of Vibration and Control, 1997.
[16] R. Krtolica and D. Hrovat, “Optimal Active Suspension Control Based on Half-
Car Model: An Analytical Solution,” IEEE Transactions on Automatic Control,
Vol.37, No.4, pp.528-532, Apr.1992.
[17] R. Krtolica and D. Hrovat, “Optimal Active Suspension Control Based on the
Half Vehicle Model,” IEEE Proceedings of the 29th Conference on Decision and
Control, pp.2238-2243, Dec.1990.
[18] A. G. Thompson and C. E. M. Pearce, “Direct Computation of Performance Index
for an Optimally Controlled Active Suspension system with Preview Applied
to a Half Vehicle Model,” Vehicle System Dynamics, Vol.35, No.2, pp.121-137,
2001.
[19] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “A Toolkit for Nonlinear
Feedback Design,” Systems and Control Letters, vol. 18, pp. 83-92,1992.
[20] D. Karnopp, “Theoretical Limitations in Active Vehicle Suspensions,” Vehicle
System Dynamics, vol. 15, pp.41-54, 1986.
[21] J.-S. Lin and I. Kanellakopoulos, “Nonlinear Design of Active Suspensions,”
IEEE Control Systems Magazine, pp.45-59, June 1997.
[22] J.-S. Lin and C.-J. Huang, “Nonlinear Control Design of Half-Car Active Suspensions,
” International Journal of Vehicle Design, Vol. 33, No. 4, 2003, pp.
332-350.
[23] A. Alleyne, and J. K. Hedrick, “Nonlinear Adaptive Control of Active Suspensions,”
IEEE Transecations on Control System Technology, vol.3, no.1, pp.94-
101, Mar. 1995.
[24] A. Alleyne, and J. K. Hedrick, “Nonlinear Control of a Quarter Car Active
Suspension,” IEEE Proceedings of the 1992 American Control Conference, pp.
21-25, June 1992.
[25] D. Hrovat, “Survey of Advanced Suspension Developments and Related Optimal
Control Applications,” Automatica, Vol.33, No.10, pp.1781-1817, 1997.
[26] J. Campos, L. Davis, F. L. Lewis, S. Ikenaga, S. Scully and M. Evans, “Active
Suspension Control of Ground Vehicle Heave and Pitch Motions,” IEEE Proceed-
ings of 7th Mediterranean Conference on Control and Automation, pp. 222-233,
1999.
[27] D. Hrovat, “Optimal Suspension Performance for Vehicle Models,” Journal of
Sound and Vibration, Vol. 146(1), pp.93-100, 1991.
[28] J.-S. Lin and I. Kanellakopoulos, “Road-adaptive Nonlinear Control of Active
Suspension,” IEEE Proceedings of the 1997 American Control Conference, Albuquerque,
June 1997, pp.714-718
[29] J.-S. Lin and I. Kanellakopoulos, “Modular adaptive design for active suspension,”
IEEE Proceedings of the 36th Conference on Decision and Control, San
Diego, CA, December 1997, pp.3626-3631.
[30] S. Ikenaga, F. L. Lewis, J. Campos and L. Davis, “Active Suspension Control of
the Ground Vehicle Based on a Full-Vehicle Model, ” IEEE Proceeding of 2000
on American Control Conference, Vol.6, 4019-4024, 2000.
[31] R. M. Chalasani and B. Soenarko, “Ride Performance Potential of the Active
Suspension System - Part II: Comprehensive Analysis Based on the Full-Vehicle
Model,” Symposium on Simulation and Control of the Ground Vehicles and
Transportation Systems, ASME , pp. 205-234, Anaheim CA, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 4. 陳榮傳,<網際網路行為的涉外法律問題>,月旦法學雜誌,第84期
2. 3. 賴來焜,<Internet國際私法之「網址法原則」>,軍法專刊,第48卷第9期
3. 2. 馮震宇,<論電子商務發展與相關法律問題(上)>,月旦法學雜誌,第36期,1998年5月
4. 1. 陳銘祥,<綜論網際網路的法律規範>,月旦法學雜誌,第72期,2001年5月
5. 37. 尤清,<網路所涉及之司法管轄權問題>,法令月刊,第51卷第10期
6. 33. 楊靜宜,<網路行為管轄權爭議問題之初探>,資訊法務透析,1999年6月
7. 32. 蔡馥如,<契約與網路管轄權>,萬國法律,第116期,民國90年4月
8. 31. 杜維武,<美國關於資訊授權與管轄權相關問題>,資訊法務透析,1999年8月
9. 30. 曾廣善,<「正當程序」條款與「最低接觸」法則-論美國法院對民事案件被告行使「長臂管轄權」之理論與實踐(下)>,軍法專刊,第37卷第5期
10. 29. 曾廣善,<「正當程序」條款與「最低度接觸」法則-論美國法院對民事案件被告行使「長臂管轄權」之理論與實務(上)>,軍法專刊,第37卷第4期
11. 26. 駱永家譯(田中英夫著),<美國之法院(下)>,法學叢刊,第102期
12. 25. 駱永家譯(田中英夫著),<美國之法院(上)>,法學叢刊,第101期
13. 23. 陳啟垂,<審判權、國際管轄權與訴訟途徑>,法學叢刊,第189期
14. 22. 陳啟垂,<以欠缺國際管轄權為上訴理由>,法學叢刊,第186期
15. 20. 陳純一,<美國國家豁免實踐中有關外國侵權行為管轄問題之研究>,政大法學評論,第61期