(34.204.185.54) 您好！臺灣時間：2021/04/16 19:45

### 詳目顯示:::

:

• 被引用:2
• 點閱:162
• 評分:
• 下載:46
• 書目收藏:0
 在IEEE 802.16e-2005 無線通訊標準中訂定了不同類型的前向錯誤更正編碼的機制，其中低密度同位檢查碼( low-density parity-check，LDPC )由於其優異的性能表現日益受到大家注意。本論文中即特別針對802.16e-2005中之LDPC Code進行完整的性能模擬與分析以探討其在行動通訊上的性能表現。
 In the IEEE 802.16e-2005 wireless communication standard, different kinds of Forward Error Correction (FEC) coding mechanisms are presented. Particularly, low-density parity-check (LDPC) is getting more and more attention because of its outstanding performance. This thesis especially simulation the complete functions of LDPC Code of 802.16e-2005 and analyses its performance of mobile communication.
 誌謝 II中文摘要 III英文摘要 IV目次 V圖目次 VII表目次 IX第一章 前言 1第二章 IEEE 802.16e-2005介紹 32.1 IEEE 802.16e技術演進 32.2 WiMAX聯盟 42.3 COST 207無線傳輸通道模型 5第三章 LDPC Code原理 73.1 LDPC Code起源 73.2 LDPC Code編碼法 83.3 LDPC Code標準解碼法 123.3.1 Tanner graph介紹 123.3.2 Message passing演算法[8] 143.3.3 和積演算法 183.4 低複雜度解碼法 283.4.1 改良型BP演算法 283.4.2 改良型BF演算法 31第四章 802.16e-2005之LDPC碼 344.1 OFDM調變原理 344.2 802.16e-2005之LDPC碼介紹 414.3 正交分頻多工技術LLR值計算 48第五章 802.16e-2005之LDPC碼效能模擬分析 515.1 AWGN通道下之性能表現 515.2 多路徑衰減通道之性能表現 595.3 高速移動環境下之性能表現 64第六章 結論 70參考文獻 71
 [1]C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes,” in Proc. IEEE ICC’93, Switzerland, May 1993, pp. 1064-1070.[2]R. G. Gallager, “Low density parity check codes,” IRE Trans. Inform. Theory, vol. 8, pp. 21-28, Jan. 1962.[3]R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. 27, pp. 533-547, Sept. 1981.[4]D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” IEEE Journal on Electron. Lett., vol 32, no. 18, pp. 1645-1646, Aug. 1996.[5]N. Wiberg, “Codes and Decoding on General Graphs,” Ph.D. thesis, Linkoping University, Sweden, 1996.[6]D. J. C. MacKay, “Gallager codes that are better than turbo codes,” in Proc. 36th Allerton Conf. Comm., Control, and Computing, Sept. 1998.[7]T. Richardson, A. Shokrollahi and R. Urbanke, “Design of capacity approaching irregular codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619-637, Feb. 2001.[8]T. Richardson and R. Urbanke, “The capacity of low density parity check codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599-618, Feb. 2001.[9]S.-Y. Chung, G. D. Forney, T. Richardson and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Journal on Comm. Lett., vol. 5, pp. 58-60, Feb. 2001.[10]J.-L. Kim, U. N. Peled, I. Perepelitsa, V. Pless and S. Friedland, “Explicit construction of families of LDPC codes with no 4-cycles,” IEEE Trans. Inform. Theory, vol. 50, pp. 2378-2388, Oct. 2004.[11]T. Tian, C. Jones, J. D. Villasenor and R. D. Wesel, “Construction of irregular LDPC codes with low error floors,” in Proc. ICC’03, Los Angeles, vol. 5, May 2003, pp. 3125-3129.[12]H. Zhang and J. M. F. Moura, “Large-girth LDPC codes based on graphical models,” in Proc. SPAWC’03, Pittsburgh, June 2003, pp. 100-104.[13]IEEE Std 802.16e-2005, 2006. Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE, New York, USA.[14]H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system design approach,” IEEE Tran. TCSI, vol. 52, pp. 766-775, Apr. 2005.[15]T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 638-656, Feb. 2001.[16]D. Burshtein, G. Miller,“Bounds on the performance of belief propagation decoding”IEEE Trans. Inform. Theory, vol. 47, pp. 112 – 122, Jan. 2002[17]M. Miladinovic, M. P. C. Fossorier and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Trans. Comm., vol. 47, pp. 673-680, May 1999.[18]F. Guilloud, E. Boutillon and J. L. Danger, "Lambda-Min Decoding Algorithm of Regular and Irregular LDPC Codes," 3rd Int. Symp. on Turbo Codes and Related Topics, Sept. 2003.[19]J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-Based decoding algorithms of LDPC codes,” IEEE Journal on Comm. Lett., vol. 6, pp. 208-210, Mar. 2002.[20]Y. Kou, S. Lin and M. P. C. Fossorier, “Low-Density Parity-Check Code Based on Finite Geometries: A Rediscovery and New Results,” IEEE Trans. Inform. Theory, vol. 47, pp. 2711-2736, Nov. 2001.[21]J. Zhang and M. P. C. Fossorier, “A Modified Weighted Bit-Flipping Decoding of Low-Density Parity-Check Codes,” IEEE Journal on Comm. Lett., vol. 8, pp. 165-167, Mar. 2004.[22]F. Guo and L. Hanzo, “Reliability ratio based weighted bit-flipping decoding for low-density parity-check codes,” IEEE Journal on Electron. Lett., vol. 40, pp. 1356-1358, Oct. 2004.[23]M. Miladinovic and M. P. C. Fossorier, “Improved bit-flipping decoding of low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 51, pp. 1594-1606, Apr. 2005.[24]J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation based decoding of low-density parity check codes,” IEEE Journal on Comm. Lett., vol. 50, pp. 406-414, March 2002.[25]M. P. C. Fossorier, ”Iterative reliability-based decoding of low-density parity check codes,” IEEE Journal on. Select. Areas Comm., vol. 19, pp. 908-917, May 2001.[26]J. Chen and M. P. C. Fossorier, “Decoding low-density parity check codes with normalized APP-based algorithm,” in Proc. IEEE Globecom., vol. 2, pp. 1026-1030, Nov. 2001.[27]L. Zhenyu and D. A. Pados, “Low complexity decoding of finite geometry LDPC codes,” in Proc. ICC’03, Alaska, USA, vol. 4, pp. 2713 – 2717, May 2003.[28]COST 207 Management Committee, “COST 207: Digital Land Mobile Radio Communications”, Commission of the European Communication, European Project Final Report EUR 12160, 1989.[29]R. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Bell Sys. Tech. J., vol. 46, pp. 1775-1796, Dec. 1966.[30]H. Jilei, P. H. Siegel and L. B. Milstein, “Performance analysis and code optimization of low density parity-check codes on Rayleigh fading channels,” IEEE Journal on Select. Areas Comm., vol. 19, pp. 924-934, May 2001.[31]Available： http://dailywireless.org/modules.php?name=News&file=article&sid=1284[32]Available：http://ieee802.org/16/published.html
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 第二代歐規地面數位視訊廣播系統之效能模擬與分析 2 IEEE802.16校園試驗網路之效能評估 3 正交分頻多工系統及多載波分碼多重存取系統之低密度同位檢查碼設計 4 適應性編碼技術基於服務品質之丟棄封包機制於IEEE802.16e網路之研究 5 兼具I/Q失衡、直流補償與通道估計之頻域WiMAX收發器設計 6 WiMax接收機之OFDM處理及同步硬體電路設計與實作 7 基於802.16-2004之OFDM基頻訊號EVM分析與實測 8 以似MIPS八核心處理器實現一適用於IEEE802.16e標準之LDPC碼 9 在IEEE802.16e網路中設計一個有效率之多使用者的UGS服務排程方法 10 LDPCCodes對WiMAX接取管理影響之研究 11 在802.16j架構下動態功率方法於省電及效能提升之研究 12 針對不規則低密度奇偶檢查碼之高吞吐量解碼器架構 13 適用於多重輸入輸出行動寬頻無線網路通訊系統之基頻測試平台 14 DesignandImplementationofaFlexibleLDPCDecoderforMobileWiMAXCommunication 15 適用於高速移動環境下之多重輸入輸出正交分頻多工基頻引擎設計

 1 27 馬寧元、李新中，生物材料之電漿表面改質技術，化工資訊與商情，民96; 44: 46-54。 2 26 陳克紹、陳素真、陳天牧、邱世華，表面電漿改質技術於生醫材料之應用，化工資訊與商情，民93; 18: 30-39。 3 19 張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川，電漿源原理與應用之介紹，物理雙月刊，民95; 28(2): 440-451。 4 9 劉志宏、陳志瑋、林春宏，大氣壓電漿表面改質技術與其應用介紹，化工資訊與商情，民95; 32: 39-51。 5 28 劉志宏、陳志瑋、張加強、林春宏，簡介大氣電漿技術及產業應用，機械工業雜誌，民95; 282: 87-98。 6 39 郭又菁、葉晨聖，奈米材料：金屬奈米粒子，工業材料雜誌，民93; 211: 167-171。 7 44 葉晨聖、黃志嘉、邱顯明、鄭百喬、葉志麟，金屬奈米顆粒及其應用，化工資訊與商情，民94; 5: 54-65.

 1 適用於IEEE802.16e標準之多碼率LDPC解碼器設計 2 適用於IEEE802.16e及802.11n標準之可配置低密度同位元檢查碼解碼器設計與實現 3 正交分頻多工系統及多載波分碼多重存取系統之低密度同位檢查碼設計 4 以似MIPS八核心處理器實現一適用於IEEE802.16e標準之LDPC碼 5 使用差分編碼的低密度同位元檢查碼之研究 6 適用於802.16e系統之可程式化低密度同位檢查碼編碼器設計 7 低密度對偶檢查碼結構之改進以及其解碼器之超大型積體電路實現 8 適用於IEEE802.11n低密度奇偶檢查碼之解碼器設計與實現 9 適用IEEE802.16e標準之多碼率單埠記憶體LDPC解碼器設計 10 新型低複雜度高效能二維查表法之低密度奇偶校驗碼解碼電路硬體實現 11 輔以低密度同位檢查編碼之多頻帶正交分頻多工超寬頻系統 12 低密度同位檢查碼的低複雜度疊代解碼演算法之介紹 13 加入低密度同位檢測碼的正交分頻多工系統之功率分配 14 學習向量量化網路與低密度同位元檢查碼應用於區域多點分配服務系統 15 具分式校驗矩陣之低密度校驗迴旋碼及其相關解碼演算法

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室