跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 03:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何應志
研究生(外文):Ying-Chih Ho
論文名稱:補充麩醯胺對耐力運動恢復期生化值之影響
論文名稱(外文):The effects of glutamine supplementation on biochemical parameters of recovery after endurance exercise
指導教授:許美智許美智引用關係
指導教授(外文):Mei-Chich Hsu
學位類別:博士
校院名稱:國立體育學院
系所名稱:體育研究所
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:101
中文關鍵詞:蛋白質水解脂解作用磷酸肌酶血氨乳酸支鏈胺基酸間白素-6胰島素游離脂肪酸甘油葡萄糖麩醯胺
外文關鍵詞:glutamineglucoseinsulinfree fatty acidglycerolIL-6lactateammoniacreatine kinaseBCAAlipolysisproteolysis.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:569
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對麩醯胺(glutamine)進行耐力運動後之補充,探討其對耐力運動後恢復期能量利用、胺基酸平衡及其他疲勞相關生化值之影響。本研究以10位國立體育學院柔道隊選手為受試者,實驗採用雙盲交叉設計,每位受試者必須在進行1小時75%VO2max強度之運動後,分別補充0.1g/kg-bw 之L-glutamine或安慰劑(成分為methylcellulose),於運動前、運動後第0, 15, 30, 45, 60, 90, 120分鐘進行靜脈採血,並進行相關血液生化値分析。結果顯示補充glutamine對恢復期血中葡萄糖及胰島素濃度並無明顯之影響,但在脂肪代謝上,補充組血中甘油濃度於恢復期60、90及120分鐘時皆明顯低於安慰劑組,游離脂肪酸之濃度也有低於安慰組之趨勢,此外補充組血中間白素-6(IL-6)濃度,在運動過後持續維持在明顯高於安慰劑組之濃度;在血中胺基酸濃度上,補充組於恢復期中,血中glutamine濃度始終高於安慰劑組,同時因代謝之影響,麩胺酸(glutamate)、及丙胺酸(alanine)之濃度於於恢復期15分鐘時亦明顯高於安慰劑組,而支鏈胺基酸(branched-chain amino acid, BCAA)濃度則在恢復期45分鐘時,明顯低於安慰劑組,而在恢復期120分鐘時則發現血中苯丙胺酸(phenylalanine)與酪胺酸(tyrosine)明顯高於安慰劑組,此外在恢復期120分鐘時安慰劑組大部份之胺基酸濃度皆明顯低於運動前,而補充組僅有glutamate之濃度明顯低於運動前;而在肌酸肌酶(creatine kinase;CK)、乳酸(lactate)及血氨(NH3)之比較上,兩組間並無明顯之差異。所以,在耐力運動後補充glutamine,可明顯抑制體內的脂解作用(lipolysis),同時讓IL-6 的濃度維持在較高之濃度,IL-6在運動後胰島素濃度較低之情況下,發揮其類荷爾蒙之作用,促進肝臟產生更多的葡萄糖,以及讓葡萄糖更快速的進入肌肉中,因而提高了身體對醣的利用率。另外,補充glutamine可避免耐力運動後血中glutamine及其它胺基酸濃度之下降,同時可以抑制BCAA之代謝,減緩蛋白質水解(proteolysis)的發生,因此可避免耐力運動後所造成之免疫功能之下降,與肌肉蛋白分解;此外,補充glutamine並無法較快清除乳酸及NH3,以及降低CK值,對於運動後的之疲勞恢復並無較有利之影響。
This study investigated the effects of glutamine supplement on metabolic responses during recovery after endurance exercise. In this randomized, crossover study, seven healthy male judo athletes were randomly divided into two groups and performed a single bout of exercise at an estimated speed corresponding to the 75﹪VO2max for 60 min, and then, took either a placebo or glutamine at 0.1g/kg-wt. Blood samples of each athlete were collected before exercise, and 0, 15, 30, 45, 60, 90, 120 minutes after exercise, respectively. The experiment was repeated two weeks later, but treatments were exchanged for two groups. The concentrations of glucose, insulin, free fatty acid, glycerol, IL-6, lactate, ammonia, creatine kinase, and 19 amino aicds in blood were examined. No differences in the levels of glucose, insulin, lactate, ammonia, or creatine kinase between two groups were observed. Compared to the placebo group, the concentration of glycerol in the glutamine group was significantly lower at 45, 60, and 120-min recovery period, and the concentration of IL-6 was significantly higher at 30, 45, 60, and 120-min recovery period. In the concentration of blood amino acids, the glutamine concentration were significantly higher during the 120-min recovery period in glutamine group, and the alanine and glutamate concentration in glutamine group also show significantly higher at the 15-min recovery period. Furthermore, the BCAA concentration in glutamine group was lower at 45-min recovery period, and the phenylalanine and tyrosine concentration were lower at 120-min recovery period. The concentration of most amino acids in placebo group at 120-min recovery period were significant lower than pre-exercise, but only glutamate in glutamine group. The results indicate that glutamine supplement during exercise recovery period could inhibit the lipolysis, and induce the higher IL-6 level, and this make advantage to glucose utilization for body. Glutamine supplement also prevent the glutamine depletion, maintain the blood concentration of glutamine and other amino aicds after the endurance exercise, and high level of blood glutamine concentration may reduce the BCAA metabolism, decreased the proteolysis during the recovery period.
目 錄

第壹章 緒論
第一節 研究動機……………………………………………………… 1
第二節 研究目的……………………………………………………… 1
第貳章 文獻探討
第一節 glutamine之簡介……………………………………………………… 3
第二節 補充glutamine對能量代謝之影響……………………………………………………… 7
第三節 補充glutamine對蛋白質代謝及胺基酸平衡之影響………………………………………………… 10
第四節 補充glutamine對運動後恢復期疲勞生化値之
影響………………………………………………… 11
第五節 glutamine之使用劑量與安全性…………………………………… 12
第參章 研究方法
第一節 研究對象…………………………………………… 14
第二節 飲食活動控制與前測……………………………………………… 14
第三節 實驗設計……………………………………………… 16
第四節 血液分析……………………………………………… 16
第五節 統計分析……………………………………………… 25
第肆章 結果
第一節 耐力運動後補充glutamine對恢復期能量利用之影響…………………………………………………27
第二節 耐力運動後補充glutamine對胺基酸平衡之影響………………………………………………………32

第三節 耐力運動後補充glutamine對恢復期疲勞生化值之影響…………………………………………42
第伍章 討論
第一節 耐力運動後補充glutamine對恢復期能量利用之影響………………………………………………45
第二節 耐力運動後補充glutamine對胺基酸平衡之影響……………………………………………53
第三節 耐力運動後補充glutamine對恢復期疲勞生化值之影響……………………………………………58
第陸章 結論與建議
參考文獻……………………………………………………… 62
附錄……………………………………………………74
附錄一 人體試驗證明函…………………………………74
附錄二 受試者須知與同意書……………………………… 75
附錄三 受試者基本資料…………………………………… 77
附錄四 Hb值……………………………………………… 78
附錄五 Hct值…………………………………………………… 79
附錄六 血糖濃度………………………………………… 80
附錄七 游離脂肪酸濃度……………………………………… 81
附錄八 甘油濃度…………………………………………… 82
附錄九 胰島素濃度…………………………………………… 83
附錄十 IL-6濃度……………………………………………… 84
附錄十一 乳酸濃度………………………………………… 85
附錄十二 血氨濃度………………………………………… 86
附錄十三 肌酸激酶濃度……………………………………… 87
附錄十四 胺基酸濃度………………………………………… 88
附錄十五 中英文對照及縮寫表……………………………… 97

表 目 錄
表3-1 胺基酸梯度分析時間與比例………………………… 24
表4-1 受試者基本資料…………………………………… 26
表4-2 兩組耐力運動前後及恢復期120分鐘內血中胺基酸濃度……………………………40
表5-1 恢復期120分鐘時血中濃度明顯比運動前下降之胺
基酸…………………………………………58

圖 目 錄
圖2-1 glutamine和glutamate在哺乳動物體內之作用與代謝…………………………………………………………4
圖2-2 運動時glucose-alanine-glutamine cycle……… 5
圖2-3 轉胺基作用………………………………………… 6
圖2-4 尿素循環及克勞伯循環相關連…………………… 7
圖2-5 IL-6調節glucose及lipolysis…………………… 10
圖4-1-1 兩組耐力運動前後及恢復期120分鍾內之血糖變化…………………………………………………………
27
圖4-1-2 兩組耐力運動前後及恢復期120分鍾內之游離脂肪酸變化………………………………………………28
圖4-1-3 兩組耐力運動前後及恢復期120分鐘內之甘油變化…………………………………………………………29
圖4-1-4 兩組耐力運動前後及恢復期120分鐘內之胰島素變化…………………………………………………………30
圖4-1-5 兩組耐力運動前後及恢復期120分鐘內之IL6變化………………………………………………………31
圖4-2-0 胺基酸分析圖譜……………………………… 33
圖4-2-1 兩組耐力運動前後及恢復期120分鐘內血中glutamine濃度之變化…………………………………34
圖4-2-2 兩組耐力運動前後及恢復期120分鐘內血中glutamate濃度之變化…………………………………35
圖4-2-3 兩組耐力運動前後及恢復期120分鐘內血中alanine濃度之變化……………………………………………36
圖4-2-4 兩組耐力運動前後及恢復期120分鐘內血中BCAA濃度之變化……………………………………………37
圖4-2-5a 兩組耐力運動前後及恢復期120分鐘內血中phenylalanine濃度之變化………………………………38
圖4-2-5b 兩組耐力運動前後及恢復期120分鐘內血中tyrosine濃度之變化……………………………………39
圖4-3-1 兩組耐力運動前後及恢復期120分鐘內血中乳酸濃度之變化…………………………………………42
圖4-3-2 兩組耐力運動前後及恢復期120分鐘內血中CK濃度之變化………………………………………………43
圖4-3-3 兩組耐力運動前後及恢復期120分鐘內血中NH3濃度之變化………………………………………………44
圖5-1 glutamine抑制lipolysis及刺激IL-6分泌以增加身體對醣之利用率………………………………………51
圖5-2 肌肉中主要之胺基酸代謝圖…………………………54
Abumrad, N. N., Yazigi N., Cersosimo, E., Hourani, H., Gedde, S., Bulus, N., & Williams, P. (1990). Glutamine metabolism during starvation. Journal of Parenteral & Enteral Nutrition, 14(4 Suppl), 71S-76S.
Aikawa, T., Matsutaka, H., Takezawa, K., & Ishikawa, E. (1972). Gluconeogenesis and amino acid metabolism. I. Comparison of various precursors for hepatic gluconeogenesis in vivo. International journal of biochemistry & biophysics, 279(2), 234-244.
Astrand, P. O., Hultman, E., Juhlin-Dannfelt, A, & Reynolds, G. (1986). Disposal of lactate during and after strenuous exercise in humans. Journal of Applied Physiology, 61(1), 338-343.
Bangsbo, J., Madsen, K., Kiens, B., & Richter, E. A. (1997). Muscle glycogen synthesis in recovery from intense exercise in humans. American Journal of Physiology, 273, E416-E424.
Bergstrom, J., Furst, P., & Hultman, E. (1985). Free amino acids in muscle tissue and plasma during exercise in man. Clinical Physiology, 5(2), 155-160.
Bonen, A., McDermott, J. C., & Tan, M. H. (1990). Glycogenesis and glyconeogenesis in skeletal muscle: effects of pH and hormones. American Journal of Physiology, 258, E693-E700.
Bowtell, J. L., Gelly, K., Jackman, M. L., Patel, A., Simeoni, M., & Rennie M. J. (1999). Effect of oral glutamine on whole body carbohydrate storage during recovery from exhaustive exercise. Journal of Applied Physiology, 86, 1770-1777.
Brooks, G. A. (1987). Amino acid and protein metabolism during exercise and recovery. Medicine & Science in Sports & Exercise, 19(5 Suppl), S150-S156.
Cersosimo, E., Williams, P., Hoxworth, B., Lacy, W., & Abumrad, N. (1986). Glutamine blocks lipolysis and ketogenesis of fasting. American Journal of Physiology, 250(3 Pt 1), E248-E252.
Cohen, S. A., & DeAntonis, K. M. (1994). Applications of amino acid derivatization with 6-aminoquinolyl-N- hydroxysuccinimidyl carbamate analysis of feed grains, intravenous solutions and glycoproteins. Journal of Chromatography A, 661, 25-34.
Cohen, S. A., & Michaud, D. P. (1993). Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N- hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Analytical Biochemistry, 279-287.
Cohen, S.A., & van Wandelen, C. (1997). Amino acid analysis of unusual and complex samples based on 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization. Techniques in Protein Chemistry VIII, 185-196.
Dechelotte, P., Darmaun, D., Rongier, M., Hecketsweiler, B., Rigal, O., & Desjeux, J.F. (1991). Absorption and metabolic effects of enterally administered glutamine in humans. American Journal of Physiology, 260, G677-G682.
Deeney, J. T., Prentki, M., & Corkey, B. E. (2000). Metabolic control of betacell function. Seminars in Cell & Developmental Biology, 11, 267-275.
Dill, D. B., & Costill, D. L. (1974). Caculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37, 247-248.
Eriksson, L. S., Broberg, S., Bjorkman, O., & Wahren, J. (1985). Ammonia metabolism during exercise in man. Clinical Physiology, 5(4), 325-336.
Febbraio, M. A., & Pedersen, B. K. (2002). Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. The FASEB Journal, 16, 1335-1347.
Frayn, K. N., Khan, K., Coppack, S. W., & Elia, M. (1991). Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clinical Science, 80, 471-474.
Gao, Z. Y., Li, G., Najafi, H., Wolf, B. A., & Matschinsky, F. M. (1999). Glucose regulation of glutaminolysis and its role in insulin secretion. Diabetes, 48, 1535-1542.
Garber, A., Karl, I., & Kipnis, D. (1976). Alanine and glutamine synthesis and release from skeletal muscle II the precursor role of amino acids in alanine and glutamine synthesis. The Journal of Biological Chemistry, 251, 836-843.
Hankard, R. G., Darmaun, D., Sager, B. K., Amore, D. D., Parsons, W. R., & Haymond, M. (1995). Response of glutamine metabolism to exogenous glutamine in humans. American Journal of Physiology: Endocrinology & Metabolism, 269, E663-E670.
Hankard, R. G., Haymond, M. W., & Darmaun, D. (1996). Effect of glutamine on leucine metabolism in humans. American Journal of Physiology, 271, E748-E754.
Hermansen, L., & Vaage, O. (1977). Lactate disappearance and glycogen synthesis in human muscle after maximal exercise. American Journal of Physiology, 233(5), E422-E429.
Herrera, M., Kamm, D., Ruderman, N., & Cahill, G. (1967). Non-hormonal factors in the control of gluconeogenesis in the rat. The Journal of Biological Chemistry, 242, 3620-3627.
Hickson, R. C., Czerwinski, S. M., & Wegrzyn, L. E. (1995). Glutamine prevents downregulation of myosin heavy chain synthesis and muscle atrophy from glucocorticoids. American Journal of Physiology, 268, E730-E734.
Hiscock, N., Petersen, E. W., Krzywkowski, K., Boza, J., Halkjaer-Kristensen, J., & Pedersen, B. K. (2003). Glutamine supplementation further enhances exercise-induced plasma IL-6. Journal of Applied Physiology, 95(1), 145-148.
Holecek, M. (2002). Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutrition, 18(2), 130-133.
Holecek, M., Skopec, F., Skalska, H., & Sprongl, L. (2000). Effect of alanyl-glutamine on leucine and protein metabolism in endotoxemic rats. Journal of Parenteral & Enteral Nutrition, 24(4), 215-222.
Holmes, A. G., Watt, M. J., & Febbraio, M. A. (2004). Suppressing lipolysis increases interleukin-6 at rest and during prolonged moderate-intensity exercise in humans. Journal of Applied Physiology, 97(2), 689-696.
Iwashita, S., Mikus, C., Baier, S., & Flakoll, P. J. (2006). Glutamine supplementation increases postprandial energy expenditure and fat oxidation in humans. Journal of Parenteral & Enteral Nutrition, 30(2), 76-80.
Iwashita, S., Williams, P., Jabbour, K., Ueda, T., Kobayashi, H., Baier, S., & Flakoll, P. J. (2005). Impact of glutamine supplementation on glucose homeostasis during and after exercise. Journal of Applied Physiology, 99(5), 1858-65.
Jahoor, F., Peters, E. J., & Wolfe, R. R. (1990). The relationship between gluconeogenic substrate supply and glucose production in humans. American Journal of Physiology, 258, E288-E296.
Jenssen, T., Nurjhan, N., Consoli, A., & Gerich, J. E. (1993). Dose-response effects of lactate infusions on gluconeogenesis from lactate in normal man. European Journal of Clinical Investigation, 23(8), 448-454.
Jenssen, T., Nurjhan, N., Consoli, A., & Gerich, J. E. (1990). Failure of substrate-induced gluconeogenesis to increase overall glucose appearance in normal humans. Demonstration of hepatic autoregulation without a change in plasma glucose concentration. The Journal of Clinical Investigation, 86(2), 489-497.
Kaloyianni, M., & Freedland, R. A. (1990). Contribution of several amino acids and lactate to gluconeogenesis in hepatocytes isolated from rats fed various diets. The Journal of Nutrition, 120, 116-122.
Krishna, M. G., Coker, R. H., Lacy, D. B., Zinker, B. A., Halseth, A. E., & Wasserman, D. H. (2000). Glucacon response to exercise is critical for accelerated hepatic glutamine metabolism and nitrogen disposal. American Journal of Physiology: Endocrinology & Metabolism, 279, E638-E645.
Lacey, J. M., & Wilmore, D. W. (1990). Is glutamine a conditionally essential amino acid? Nutrition Reviews, 48(8), 297-309.
Lehninger, A. L., Nelson, D. I., & Cox, M. M. (1993). Principles of Biochemistry, 2nd ed. Worth Publishers, New York, NY, 628-633.
MacLean, D. A., Spriet, L. L., Hultman, E., & Graham, T. E. (1991). Plasma and muscle amino acid and ammonia responses during prolonged exercise in humans. Journal of Applied Physiology, 70(5), 2095-2103.
MacLennan, P. A., Brown, R. A., & Rennie, M. J. (1987). A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett, 215, 187-191.
MacLennan, P. A., Smith, K., Weryk, B., Watt, P. W., & Rennie, M. J. (1988). Inhibition of protein breakdown by glutamine in perfused rat skeletal muscle. FEBS Lett, 237, 133-136.
McConnell, T. R. (1988). Pratical considerations in the testing of VO2max in runners. Sports Medicine, 5, 57-68.
Mourtzakis, M., & Graham, T. E. (2002). Glutamate ingestion and its effects at rest and during exercise in humans. Journal of Applied Physiology, 93(4), 1251-1259.
Newsholme, E., & Hardy, G. (1997). Supplementation of diets with nutritional pharmaceuticals. Nutrition, 13(9), 837-839.
Newsholme, P., Procopio, J., Lima, M. M., Pithon-Curi, T. C., & Curi, R. (2003). Glutamine and glutamate--their central role in cell metabolism and function. Cell Biochemistry & Function, 21(1), 1-9.
Nurjhan, N., Bucci, A., Perriello, G., Stumvoll, M., Dailey, G., Bier, D., Toft, I., Jenssen, T., & Gerich, J. (1995). Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man. The Journal of Clinical Investigation, 95, 272-277.
Nurjhan, N., Consoli, A., & Gerich, J. (1992). Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. The Journal of Clinical Investigation, 89(1), 169-175.
Opara, E. C., Petro, A., Tevrizian, A., Feinglos, M. N., & Surwit, R. S. (1996). L-glutamine supplementation of a high fat diet reduces body weight and attenuates hyperglycemia in C57BL/6J mice. The Journal of Nutrition, 126, 273-279.
Ostenson, C. G., & Grebing, C. (1985). Evidence for metabolic regulation of pancreatic glucagon secretion by L-glutamine. Acta Endocrinologica, 108(3), 386-391.
Ostrowski, K., Rohde, T., Zacho, M., Asp, S., & Pedersen, B. K. (1998). Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running, Journal Physiology ( Lond.), 508, 949-953.
Pedersen, B. K., Steensberg, A., & Schjerling, P. (2001). Exercise and interleukin-6. Current Opinion in Hematology, 8, 137-141.
Pedersen, B. K., Steensberg, A., & Schjerling, P. (2001). Muscle-derived interleukin-6: possible biological effects. The Journal of Physiology, 536, 329-337.
Perriello, G., Nurjhan, N., Stumvoll, M., Bucci, A., Welle, S., Dailey, G., Bier, D. M., Toft, I., Jenssen, T. G., & Gerich, J. E. (1997). Regulation of gluconeogenesis by glutamine in normal post-absorptive humans. American Journal of Physiology, 272, E437-E445.
Rennie, M. J., & Tipton, K. D. (2000). Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annual Review of Nutrition, 20, 457-483.
Rennie, M. J., Edwards, R. H., Krywawych, S., Davies, C. T., Halliday, D., Waterlow, J. C., & Millward, D. J. (1981). Effect of exercise on protein turnover in man. Clinical Science, 61(5), 627-639.
Rowbottom, D. G., Keast, D., & Morton, A. R. (1996). The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Medicine, 21, 80-97.
Sahlin, K., Katz, A., & Broberg, S. (1990). Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. American Journal of Physiology, 259, C834-C841.
Schoolwerth, A., Smith, B. & Culpepper, R. (1994). Renal gluconeogenesis. Mineral and Electrolyte Metabolism, 14, 347-361.
Scislowski, P. W. D., Niblock, A., Lindsay, Y., Weryk, B., Watt, P. W., & Rennie, M. J. (1989). Glutamine stimulates glycogen synthesis in skeletal muscle (Abstract). Clinical Nutrition, 8, P80.
Shimomura, Y., Murakami, T., Nakai, N., Nagasaki, M., & Harris, R. A. (2004). Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. The Journal of Nutrition, 134(6 Suppl), 1583S-1587S.
Singleton, K. D., & Wischmeyer, P. E. (2006). Oral glutamine enhances heat shock protein expression and improves survival following hyperthermia. Shock, 25(3), 295-299.
Singleton, K. D., Serkova, N., Beckey, V. E., & Wischmeyer, P. E. (2005). Glutamine attenuates lung injury and improves survival after sepsis: role of enhanced heat shock protein expression. Critical Care Medicine, 33(6), 1206-1213.
Tanizawa, Y., Nakai, K., & Sasaki, T. (2002). Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion. Diabetes, 51, 712-717.
Timothy, P. G., & Joel, M. S. (1999). The effect of exercise modality on exercise-induced hypoxemia. Respiration Physiology, 115, 317-323.
Tipton, K. D., Ferrando, A. A., Phillips, S. M., Doyle, D. Jr., & Wolfe, R. R. (1999). Postexercise net protein synthesis in human muscle from orally administered amino acids. American Journal of Physiology, 276, E628-E634.
van Loon, L. J. C., Saris, W. H. S., Kruijshoop, M., & Wagenmarkers, A. J. M. (2000). Maximising post-exercise muscle glycogen synthesis: Carbohydrate supplementation and the application of amino acid and protein hydrolysate mixtures. The American Journal of Clinical Nutrition, 72, 106-111.
van Hall, G., Saris, W. H. M., van de Schoor, P. A. I., & Wagenmakers, A. J. M. (2000). The effect of free glutamine and peptide ingestion on the rate of muscle glycogen resynthesis in man. International Journal of Sports Medicine, 21, 25-30.
Varnier, M., Leese, G. P., Thompson, J., & Rennie, M. J. (1995). Stimulatory effect of glutamine on glycogen accumulation in human skeletal muscle. American Journal of Physiology: Endocrinology & Metabolism, 269, E309–E315.
Vom Dahl, S., & Haussinger, D. (1996). Nutritional state and swelling-induced inhibition of proteolysis in perfused rat liver. The Journal of Nutrition, 126, 395-402.
Weigert, C., Hennige, A. M., Brodbeck, K., Haring, H. U., & Schleicher, E. D. (2005). Interleukin-6 acts as insulin sensitizer on glycogen synthesis in human skeletal muscle cells by phosphorylation of Ser473 of Akt. American Journal of Physiology: Endocrinology & Metabolism, 289(2), E251-E257.
Weingartmann, G., Fridrich, P., Mauritz, W., Gotzinger, P., Mittlbock, M., Germann, P., Karner., J., & Roth, E. (1996). Safety and efficacy of increasing dosages of glycly-glutamine for total parenteral nutrition in polytrauma patients. Wiener Klinische Wochenschrift, 108, 683-688.
Wirthensohn, G., & Guder, W. (1986). Renal substrate metabolism. Physiological Reviews, 66, 469-497.
Wischmeyer, P., & John, M. (2004). Kinney International Award for General Nutrition. Glutamine, heat shock protein, and inflammation--opportunity from the midst of difficulty. Nutrition, 20(6), 583-585.
Wischmeyer, P. E. (2006). Glutamine: the first clinically relevant pharmacological regulator of heat shock protein expression? Current Opinion in Clinical Nutrition & Metabolic Care, 9(3), 201-206.
Ziegler, T. R., Benfell, K., Smith, R. J., Young, L. S., Brown, E., Ferrari-Baliviera, E., Lowe, D. K., & Wilmore, D. W. (1990). Safety and metabolic effects of L-glutamine administration in humans. Journal of the Parenteral Entral Nutrition, 14, 137S-146S.
Ziegler, T. R., Ogden, L. G., Singleton, K. D., Luo, M., Fernandez-Estivariz, C., Griffith, D. P., Galloway, J. R., & Wischmeyer, P. E. (2005). Parenteral glutamine increases serum heat shock protein 70 in critically ill patients. Intensive Care Medicine, 31(8), 1079-1086.
Ziegler, T. R., Young, L. S., Benfell, K., Scheltinga, M., Hortos, K., Bye, R., Morrow, F. D., Jacobs, D. O., Smith, R. J., & Antin, J. H. (1992). Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. A randomized, double-blind, controlled study. Annals of Internal Medicine, 116(10), 821-828.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top