跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/12 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宣汝
研究生(外文):Hsuan-Ju Lin
論文名稱:彩色質點影像測速法於浸没植生渠道流場之試驗研究
論文名稱(外文):Experimental Study on Flow Field of Submerged Vegetation Channel Using Color Particle Image Velocimetry Method
指導教授:葉克家葉克家引用關係
指導教授(外文):Keh-Chia Yeh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:95
中文關鍵詞:彩色質點影像測速法植生
外文關鍵詞:Color Particle Image Velocimetry Methodvegetation
相關次數:
  • 被引用被引用:5
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:1
水流流經植生所產生之流場變化極為複雜,於天然河川中,由於植生種類更為多樣性,不確定性之物理量更多,植生部分包括根莖直徑、高度與植生間距等因素,因此,本研究將針對水流通過低莖植生表面之水流現象進行研究,並利用非入侵式彩色質點影像測速法(color particle image velocimentry,簡稱CPIV)之量測方法進行通過植生表面之流場觀測研究,了解植生渠道流場之流速變化。並利用攝影機(CCD)擷取流體影像,進而影像分析,以獲得流場之速度向量分佈與相關之物理量分析,從其中得知渠道植生表面對水流之相關影響。
本研究以兩種不同底床模型進行試驗,分別為光滑平板及水草莫絲,後者之植生高度約為1.5cm。入流量分別為60、80、100(L/min),上游水深分別為5及6cm,共12組試驗案例,比較兩不同底床渠道,植生渠道因底床受到植生影響,通水斷面束縮進而影響流速變化與曼寧n值之差異。此外,根據試驗結果可明顯看出植生渠道因受植生阻力影響,而能量損失率變大,尤其當流量增加或者水深降低時,能量損失率也隨之變大,其底床平板渠道之能量損失平均為9.81%,植生渠道之能量損失平均為11.81﹪,因此,在低莖植生表面之研究中,植生表面不僅會造成水流於近植生表面之流場之改變,亦有消能之功效,對於渠道的穩定有相當之幫助。
Flows through vegetations have extremely complicated variation and are affected by the diameter, height, and spacing of the vegetated stems. Hence, this study tries to understand the phenomenon of varied flow velocities passing the submerged vegetations, using the non-intrusive color particle image velocimetry method (CPIV) to measure the vertical 2-D flow field. The CCD takes the instantaneous images of vegetated channel flow field and makes analysis of the images to obtain the distribution of velocity vectors and the related physical properties in the flow field.

The experiment in this study is constructed under two types of bed materials: one is a smooth flat panel and the other is a vegetated one with a height of 1.5 cm. These two types of bed materials are compared with twelve sets of experimental cases. The flow discharges in the experiment are controlled with levels of 60, 80, and 100 (l/min) with flow depths of 5 and 6 cm in the upstream boundary conditions. From the results, the average energy loss is 11.81% in the case of vegetated bed and 9.81% in the bed with smooth flat panel. Energy loss is accelerated with increasing discharge or decreasing depth. The surface of the vegetation could change the flow field and dissipate energy.
中文摘要----------------------------------------------I
英文摘要----------------------------------------------II
誌 謝------------------------------------------------III
目錄--------------------------------------------------IV
表目錄------------------------------------------------VII
圖目錄------------------------------------------------VIII
第一章 導論-------------------------------------------1
1-1研究動機-----------------------------------------1
1-2研究目的-----------------------------------------2
1-3文獻回顧-----------------------------------------3
1-3-1 質點影像測速法------------------------------3
1-3-2植生渠道流場相關研究-------------------------8
1-4研究方法-----------------------------------------13
1-5本文組織-----------------------------------------14
第二章 試驗之儀器佈置--------------------------------15
2-1 光學設備系統-----------------------------------15
2-2 訊號控制系統-----------------------------------16
2-3 影像系統---------------------------------------17
2-4 試驗渠槽---------------------------------------17
2-5 試驗模型---------------------------------------17
2-6 顯影質點---------------------------------------18
2-7 實驗程序---------------------------------------18
第三章 CPIV法影像原理與分析流程-----------------------21
3-1 CPIV影像前處理---------------------------------21
3-2 程式運算分析-----------------------------------21
3-3 CPIV法之誤差來源--------------------------------27
3-4有限質問窗尺寸所致誤差---------------------------30
第四章 光滑底床與植生底床之渠道試驗------------------32
4-1 渠道水流穩定測試-------------------------------32
4-1-1 實驗結果分析--------------------------------32
4-2 光滑底床與植生底床渠道流場試驗-----------------33
4-2-1 實驗結果分析--------------------------------33
一、實驗案例結果說明----------------------------33
二、不同底床下流速分佈之比較--------------------37
三、探討於不同底床下之水流阻力------------------38
四、比較不同底床下之能量損失--------------------39
第五章 結論與建議-------------------------------------41
5-1 結論--------------------------------------------41
5-2 建議--------------------------------------------42
參考文獻----------------------------------------------44
1. Adrian, R. J. (1991), “Particle image techniques for experimental fluid mechanics”, Annual Review of Fluid Mechanics, 23, 261-304.
2. Armanini, A., Righetti, M., Grisenti, P. (2006), “Direct measurement of vegetation resistance in prototype scale”, Journal of Hydraulic Research, Vol. 43, No.5, pp. 481-487.
3. Capart, H., Young, D. L., and Zech, Y. (2002), “Voronoi imaging methods for the measurement of granular flows”, Experiments in Fluids, 32, 121-135.
4. Carollo, F.G., Ferro, V., and Termini, D. (2005), “Flow Resistance Law in Channels with Flexible Submerged Vegetation”, Journal of Hydraulic Engineering, Vol. 131, No. 7.
4. Cowen, E. A. and Monismith, S. G. (1997), “A hybrid digital particle tracking
velocimetry technique”, Experiments in Fluids, 22, 199-211.
5. Fincham, A. M. and Spedding, G. R. (1997), “Low cost high resolution DPIV for
measurement of turbulent fluid flow”, Experiments in Fluids, 23, 449-462.
6. Fincham, A. M. and Delerce, G. (2000), “Advanced optimization of correlation imaging veloctmetry algorithm”, Experiments in Fluids, (suppl.), s13-s22.
7. Forliti, D. J., Strykowski, P. J., and Debatin, K. (2000), “Bias and precision errors of digital particle image velocimetry”, Experiments in Fluids, 28, 436-447.
8. Freek, C., Wu, K. A, and Hentschel, W. (1996), “A novel diode laser PIV/PTV system for investigation of intake flows in engines”,8th Int Symp on Applications of Laser Techniques to Fluid Mechanics, Lisbon.
9. Gogineni, S., Goss, L., Pestian, D., and River, R. (1998), “Two-color digital PIV employing a single CCD camera”, Experiments in Fluids, 25, 320-328.
10. Gui, L. and Merzkirch, W. (1998), “Generating arbitrarily sized interrogation windows for correlation-based analysis of particle image velocimetry recordings”, Experiments in Fluids, 24, 66-69.
11. Gui, L., Marzkirch, W., and Fei, R. (2000), “A digital mask technique for reducing the Bias error of the correlation-based PIV interrogation algorithm”, Experiments in Fluids, 29, 30-35.
12. Gui L, Merzkirch W. (2000), “A comparative study of the MQD method and several correlation-based PIV evaluation algorithms”, Exp Fluids, 28, 36–44.
13. Gui, L., Longo, J., and Stern, F. (2001), “Biases of PIV measurement of turbulent flow and the masked correlation-based interrogation algorithm”, Exp. Fluids, 30, 27–35.
14. Hesselink, L. (1988), “Digital image processing in flow visualization”, Annual Review of Fluid Mechanics, 20, 421-485.
15. He, Z. H., Sutton, M. A., Ranson, W. F., and Peters, W. H. (1984), “Two dimensional velocity measurements by use of digital speckle correlation techniques”,Experimental Mechanics, 7, 117-121.
16. Huang, H. T., Fiedler, H. E., and Wang, J. J. (1993), “Limitation and improvement of PIV. I. Limitation of conventional techniques due to deformation of particle image patterns”, Exp. Fluids, 15, 168–174.
17. Huang, H.T., Fiedler, H. E., and Wang, J. J. (1993), “ Limitation and improvement of PIV. II. Particle image distortion, a novel technique”, Exp. Fluids, 15, 263–273.
18. Huang, H., Dabiri, D., and Gharib, M. (1997), “On error of digital particle image velocimetry”, Meas. Sci. Technol., 8, 1427-1440.
19. Huang, H. T. (1998), “An extension of digital PIV-processing to double-exposed images”, Exp. Fluids, 24, 367–372.
20. Hyun, B. S. (2003), “Assessment of PIV to measure mean velocity and turbulence in open-channel flow”, Experiments in Fluids, 35, 262-267.
21. James, C. S. and Birkhead, A. L. (2004), “Flow Resistance of Emergent Vegetation”, Journal of Hydraulic Research, Vol. 42, 390-398.
23. Jaw, S. Y. and Chen, J. P. (2000), “Development of Color Particle Image Velocimetry and It’s Application in Rotationg Flow”, 9th Inter. Symp. On Flow Visualization, 152, 1-10.
24. Jaw, S. Y. and Wu, J. L. (2000), “Alternating Color Image Anemometry and It’s Application”, Journal of Flow Visualization and Image Processing, 7, 189-205.
25. Jaw, S. Y., Haik, Y., and Chen, J. P. (2001),“Visualization of magnetic micro-sphere mixing in biological fluid flow using color PIV”, Mechanics and Material Conference, San Diego, U.S.A. 27-29.
26. Jordanova, A. A. and James, C. S. (2003), “Experimental Study of Bed Load Transport through Emergent Vegetation”, Journal of Hydraulic Engineering, Vol.129, No. 6.
26. Keane, R. D. and Adrian, R. J. (1990), “Optimization of particle image velocimeters, PartⅠ: Double pulsed systems”, Meas. Sci. Technol. 1, 1202-1215.
27. Kirby, J. T., Durrans, S. R., Pitt, R. and Johnson, P. D. (2005), “Hydraulic Resistance in Grass Swales Designed for Small Flow Conveyance”, Journal of Hydraulic Engineering, Vol. 131, No. 1.
28. Landreth, C. C. and Adrian, R. J. (1988), “Electrooptical image shifting for particle image velocimetry”, Applied Optics, 27, 4216-4220.
29. Liang, D. F. and Jiang, C. B. (2002), “A combination correlation-based interrogation and tracking algorithm for digital PIV evaluation”, Experiments in Fluids, 33, 684-695.
30. Lourenco, L. and Krothapalli, A. (1995), “On the accuracy of velocity and vorticity measurements with PIV”, Exp. Fluids, 18, 421-428.
31. Marzouk, Y. M. and Hart. D. P. (1998), “Asymmetric autocorrelation function to resolve directional ambiguity in PIV images”, Exp. Fluids, 25, 401-408.
32. Meynart, R. (1980), “Asymmetric autocorrelation function to resolve directional ambiguity in PIV images”, Exp. Fluids, 19, 1385-1386.
33. Musleh, F.A. and Cruise, J. F. (2006), “Functional Relationships of Resistance in Wide Flood Plains with Rigid Unsubmerged Vegetation”, Journal of Hydraulic Engineering, Vol. 132, No. 2.
34. Nogueira, J. Lecuona, A., and Rodriguez, P. A. (1997), “Data validation, false vectors correction and derived magnitudes calculation on PIV data”, Meas. Science and Technology, 8, 1493-1501.
35. Rehm, J. E. and Clemens, N. T. (1999), “An improved method for enhancing the resolution of conventional double-exposure single frame particle velocimetry”, Experiments in Fluids, 26, 497-504.
36. Reynold, G. A., Short, M., and Whiffen, M. C. (1985), “Automated reduction of instantaneous flow field images”, Optical Engineering, 24, 475-479.
37. Rosenfeld, A. and Kak, A. C. (1976), “Digital picture processing”, 1, Academic Press, New York.
38. Scarano, F. and Riethmuller, M. L. (1999), “Iterative multigrid approach in PIV image processing with discrete window offset”, Experiments in Fluids.
39. Scarano, F. and Riethmuller, M. L. (2000), “Advances in iterative multigrid PIV image processing”, Exp. Fluids, 29, 51–60.
40. Stanislas, M., Okamoto, K. and Kahler, C. (2003), “Main results of the First International PIV Challenge”, Meas. Science and Technology, R63-R89.
41. Stone, B. M. and Shen, H. T. (2002), “Hydraulic resistance of flow in Channels with cylindrical roughness”, Journal of Hydraulic Engineering, 128, 500-506.
42. Choi, Sung-Uk and Kang, H. (2004), “Reynolds stress modeling of vegetated open-channel flows”, Journal of Hydraulic Research, 42, 3-11.
43. Vogel, A. and Lauterborn, W. (1988), “Time resolved particle velocimetry used in the investigation of cavitation bubble dynamics”, Applied Optics, 27, 1869-1876.
44. Westerweel, J. (1994), “Efficient detection of spurious vectors in particle image velocimetry data”, Experiments in Fluids, 16, 236-247.
45. Westerweel, J., Draad, A., Hoeven, J., and Oord, J. (1996), “Measurement of fully-developed turbulent pipe flow with digital particle image velocimetry”, Exp. Fluids, 20, 165–177.
46. Westweel, J. (1997), “Fundamentals of digital particle image velocimetry”, Meas. Sci. Technology, 8, 1379-1392.
47. Westerweel, J., Dabiri, D. and Gharib, M. (1997), “The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings”, Exp. Fluids, 23, 20–8.
48. Willert, C. E. and Gharib, M. (1991), “Digital particle image velocimetry”, Exp. Fluids, 10, 181-193.
49. Willert, C. E. (1996), “The fully digital evaluation of photographic PIV recordings”, Appl Sci Res, 56, 79–102.
50. Wu, Fu-Chun, Shen, Hsieh-Wen and Chou, Yi-Ju (1999), “Variation of Roughhness Coefficients for Unsubmerged and Submerged Vegetation”, Journal of Hydraulic Engineering, Vol. 125, No. 9.
50. Dong, Z. B., Gao, S. Y., and Fryrear, D. W. (2001), “Drag coefficients, roughness length and zero-plane displacement height as disturbed by artificial standing vegetation”, Journal of Arid Environments, 49, 485-505.
51. 游新褔、黃宏斌 (1992), “植生渠道阻力係數之研究”,台灣水利,第40卷,第4期,50-59。
52.黃明興(1993), “植生倒伏對水流阻力影響之研究”,國立台灣大學農業工程學研究所碩士論文。
53.楊昇學(2002), “彩色質點影像測速法於瞬間潰壩流場之試驗研究”,國立交通大學土木工程研究所碩士論文。
54.黃于軒(2005), “彩色質點影像測速法於植生渠道流場之試驗研究”,國立交通大學土木工程研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top