跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 01:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王昱棋
論文名稱:含混凝土樓版之預力抗彎接頭的反覆載重行為
論文名稱(外文):Effects of Concrete Slab on Cyclic Behavior of Post-tensioned Moment Connections
指導教授:周中哲
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:210
中文關鍵詞:削切鋼板預力接頭鋼腱混凝土樓版
外文關鍵詞:reduced flange platereduced flange platestrandconcrete slab
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:1
預力系統結合預力鋼腱與消能元件之特性,其中鋼腱中之初始預力提供自行復位的能力,並藉由消能元件之降伏產生遲滯消能行為,因此整個預力式建築兼具自行復位、殘餘變形小及擁有遲滯消能的能力。因此本研究以靜態反覆載重實驗的方式探討在鋼梁上下翼板提供不同厚度的削切鋼板以及含與不含混凝土樓版之預力梁柱接合系統的力學行為及抗震性能。實驗結果顯示(1)含樓版試體在千斤頂往正方向作用時的彎矩與未架設樓版試體接近,但在千斤頂往負方向作用時未架設樓版試體的彎矩分別約為含樓版試體的0.72%及0.6%,所以預力梁柱接合系統於鋼梁上架設樓版,對預力系統自行復位的能力造成很大的影響、(2) 由預力梁柱接合系統力量與位移間的關係利用迭代方法可以預測含樓版試體的行為、及(3) 以有限元素分析程式(ABAQUS)模擬其中一組含非傳統樓版試體以探討含樓版預力接合系統在撓曲載重作用下的行為。
This thesis presents the results of experimental and analytical studies on self-centering moment connections with and without composite concrete slab.Cyclic tests were conducted on four full-scale subassemblies.Two subassemblies consist of steel beams post-tensioned to a reinforced concrete column and reduced flange plates for energy dissipation.Composite concrete slab with partial debonded longitudinal reinforcement through the connection is also included in other two subassemblies in order to examine the effects of concrete slab on the self-centering behavior of the connection.Test and analytical studies indicated that (1) connection moment strengths in positive bending were similar but in negative bending were different on the order of 0.72 and 0.6 percent compared to the bare steel beam subassembly so that the self-centering behavior of the subassemblies with the composite concrete slab was not observed, (2) force-transferring mechanism in the connection proposed was able to predict the force-deformation relationship of the subassembly with the composite concrete slab, and (3) a general-purpose nonlinear finite element analysis program ABAQUS was used to perform the correlation study on the subassemblies with and without composite concrete slab.
中文摘要……………………………………………………………Ⅰ
英文摘要……………………………………………………………Ⅱ
誌謝…………………………………………………………………Ⅲ
目錄…………………………………………………………………Ⅳ
表目錄………………………………………………………………Ⅶ
圖目錄………………………………………………………………Ⅷ
照片目錄……………………………………………………………ⅩⅣ
第一章 緒論……………………………………………………1
1.1 前言……………………………………………………1
1.2 文獻回顧………………………………………………1
1.3 研究動機與目的………………………………………2
1.4 研究內容………………………………………………3
第二章 預力梁柱接頭行為……………………………………4
2.1 前言………………………………………………………4
2.2 預力梁柱接頭梁端彎矩與旋轉角關係…………………4
2.2.1 預力梁柱接頭勁度…………………………………7
2.3 預力梁柱接合試體設計…………………………………13
2.3.1 試體1………………………………………………14
2.3.2 試體2………………………………………………14
2.3.3 試體3………………………………………………15
2.3.4 試體4………………………………………………15
2.4 材料性質…………………………………………………16
2.5 試體載重歷時及梁測儀器規劃…………………………17
第三章 試體試驗與結果分析…………………………………18
3.1 前言…………………………………………………………18
3.2 鋼管混凝土柱試體製作與組裝……………………………18
3.3 試體1實驗結果……………………………………………19
3.3.1 實驗現象觀察………………………………………19
3.3.2 整體反應……………………………………………20
3.3.3 局部反應……………………………………………21
3.4 試體2實驗結果……………………………………………21
3.4.1 實驗現象觀察………………………………………21
3.4.2 整體反應……………………………………………22
3.4.3 局部反應……………………………………………24
3.5 鋼筋混凝土柱試體製作與組裝…………………………24
3.6 試體3實驗結果…………………………………………25
3.6.1 實驗現象觀察………………………………………26
3.6.2 整體反應……………………………………………26
3.6.3 局部反應……………………………………………28
3.7 試體4實驗結果…………………………………………28
3.7.1 實驗現象觀察………………………………………28
3.7.2 整體反應……………………………………………29
3.7.3 局部反應……………………………………………30
第四章 實驗結果分析與有限元素分析………………………32
4.1 前言………………………………………………………32
4.2 不含樓版試體預測模擬分析……………………………32
4.2.1 試體1實驗與預測模擬分析…………………………32
4.2.2 試體3實驗與預測模擬分析…………………………33
4.3含樓版試體實驗結果分析…………………………………34
4.3.1 試體2實驗與預測模擬分析……………………………34
4.3.2 試體4實驗與預測模擬分析……………………………47
4.3 有限元素分析………………………………………………50
4.3.1有限元素分析程式ABAQUS介紹…………………………50
4.3.2削切鋼板有限元素分析………………………………52
4.3.3試體3有限元素分析……………………………………53
4.3.4試體4有限元素分析……………………………………55
4.3.5參數研究………………………………………………59
第五章 結論與建議……………………………………………60
5.1 結論………………………………………………………60
5.2 建議…………………………………………………………62
參考文獻……………………………………………………………63
1. AISC. (2002). Seismic provisions for structural steel buildings. AISC, Chicago. IL.
2. ACI. (2002). Building Code and Commentary. ACI 318M-02/318RM-02.
3. Cheok, G. and Lew, H. (1993). “Model precast cncrete beam-to-column connections subject to cyclic loading.” PCI J., 38 (4), 80-92.
4. Cheok, G. and Stone, W. (1994). “Performance of 1/3 scale model precast concrete beam-column connections subjected to cyclic inelastic loads�{Report No. 4,” Rep. No. NISTIR 5436, National Institute of Standards and Technology, NIST, Gaithersburg, Md.
5. Chou, C. C. and Uang, C. M. (2002). “Cyclic performance of a type of steel beam to steel-encased reinforced concrete column moment connection.” J. Constructional Steel Research, 58, 637-663.
6. Christopoulos, C., Filiatrault, A., Uang, C. M., and Folz, B. (2002). “Posttensioned energy dissipating connections for moment-resisting steel frames.” J. Struct. Eng., ASCE, 128(9), 1111–1120.
7. Christopoulos, C., Filiatrault, A., and Folz, B. (2002). “Seismic response of self-centring hysteretic SDOF systems.” Earthquake Eng. Struct. Dyn., 31, 1131–1150.
8. Chou, C. C., Chen, J. H., Chen, Y. C., (2004) “Performance evaluation of posttensioned steel connections for moment-resisting frames” 6th Korea-Japan-Taiwan Joint Seminar on Earthquake Engineering for Building Structures, Taiwan.
9. Chou, C. C. and Chen, Y. H. (2005). ”Cyclic tests of post-tensioned precast CFT segmental bridge columns with unbonded strands.” Earthguake Eng. Struct. Dyn. (Accepted)
10. Chou, C. C., Chen, J. H., Chen, Y. C., and Tsai, K. C. (2005). “Experimental and Analytical Studies of Self-Centering Steel Connections.” US-Taiwan Workshop on Self-Centering Structural Systems, NCREE Report No:05-004, Taipei, Taiwan.
11.Chou, C. C., Tsai, K. C., Chen, J. H., Chen, Y. C., and Chuang, S. C. (2005) “Cyclic Behavior of Post-tensioned Steel Connections with Reduced Flange Plate and Slab.” 1st International Conference on Advances in Experimental Structural Engineering, Nagoya, Japan.
12. Chou, C. C., Chen, J. H., Chen, Y. C., and Tsai, K. C. (2006). “Evaluating Performance of Post-tensioned Steel Connections with Strands and Reduced Flange Plates” Earthquake Engineering and Structural Dynamics, 35(9), pp. 1167-1185.
13.Deierlein, G. G. and Noguchi, H. (2004). “Overview of U.S.-Tapan Research on the Seismic Design of Composite Reinforced Concrete and Steel moment frame Structures.“ J. Struct. Eng. ASCE, 130(2), 361-367.
14.Englekirk, R. E. (1996). “An innovative design solution for precast prestressed concrete buildings in high seismic zones.” PCI J., 41(4), 44–53.
15.Englekirk, R. E. (2002). “Design-construction of the paramount – a 39-story precast prestressed concrete apartment building.” PCI J., 47(4), 56–71.
16.Garlock, M., Ricles, J. M., Sause, R. (2005). “Experimental studies of full-scale posttensioned steel connections.” J. Struct. Eng., 131(3), 448–448.
17.Hews J. T. and Priestley, M. T. N. (2002). ”Seismic design and performance of precast concrete segmental bridge columns.” Rep. NO. SSRP 2001/25, University of California, San Diego, La Jella. CA.
18.Nakaki, S. D., Stanton, J. F., and Sritharan, S. (1999). “An overview of the PRESSS five-story precast test building.” PCI J., 44(2), 26–39.
19.Nishiyama, M., Watanabe, F., and Muaguruma, H. (1991). “Seismic performance of prestressed concrete beam-column joint assemblages.” Pacific Conference on Earthquake Engineering, New Zealand, 217–228.
20.Park, R., and Thompson, K. J. (1977). “Cyclic load tests on prestressed and partially prestressed beam-column joints.” PCI J., 22(5), 84–100.
21.Pampanin, S., Priestley, M. J. N., and Sritharan, S. (1999). “Frame direction modeling of the five-story PRESSS precast test building.” Rep. No. SSRP 99/20, University of California, San Diego, La Jolla, CA.
22.Priestley, M. J. N., and Tao, J. R. (1993). “Seismic response of precast prestressed concrete frames with partially debonded tendons.” PCI J., 38(1), 58–66.
23.Priestley, M. J. N., and MacRae, G. A. (1996). “Seismic tests of precast beam-to-column joint subassemblages with unbonded tendons.” PCI J., 41(1), 64–81.
24.Priestley, M. J. N. (1996). “The PRESSS program-current status and proposed plans for phase III.” PCI J., 41(2), 22–40.
25.Ricles, J. M., Sause, R., Garlock, M. M., and Zhao, C. (2001). ‘‘Post¬tensioned seismic-resistant connections for steel frames.’’ J. Struct. Eng., ASCE, 127(2), 113–121.
26.Ricles, J. M., Sause, R., Peng, S. W., and Lu, L. W. (2002). “Experimental evaluation of earthquake resistant posttensioned steel connections.” J. Struct. Eng., ASCE, 128(7), 850–859.
27.Rojas, P., Ricles, J. M., Sause, R. (2005). ‘‘Seismic performance of post-tensioned steel moment resisting frames with friction devices.’’ J. Struct. Eng., ASCE, 131(4), 529–540.
28.Uang, C. M. and Bonded, D. (1996). ”Static Cyclic Testing of Pre-Northridge and haunch repaired Steel moment Connections.” SSRP 96/102, University of California, Sau Diego, CA.
29.Watanabe, F., Okamoto, S., Hiraishi, H. (2000). ”Development of the Structual design and construction guideline for high-rise PC buildings Japanese PC project.” 12WCEE.
30.蔡克銓,周中哲,楊文嘉 (2005)「鋼造預力接頭梁柱行為研究」,NCREE-05-015,國家地震工程研究中心。
31.陳俊翰(2005)「預力鋼梁與鋼筋混凝土柱自行復位接頭之耐震行為研究」,國立交通大學土木工程研究所碩士論文,指導教授 周中哲。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top