跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/14 00:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾政良
研究生(外文):Zheng-Liang Zhong
論文名稱:河床質調查位置與數量的合理性探討
論文名稱(外文):The Feasibility Study for Determining the Locations and Numbers of Gravel Bed Material Sampling
指導教授:廖志中廖志中引用關係
指導教授(外文):Jyh-Jong Liao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:108
中文關鍵詞:河床質網格法河相評選系統
外文關鍵詞:bed materialgrid samplingriver morphologyselect system
相關次數:
  • 被引用被引用:4
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:1
水利工程進行河川整治,探討水理以及輸砂問題時,河床質的組成是重要影響因子之一。河床質因受多項變異性的影響,調查需依據河相、地質、地形等將河川加以分類,並考慮河川的縱向、橫向以及垂直向之變異性,挑選出具有代表性的取樣位置。
本論文採用傅志偉(2005)提出的河床質調查位置評選方法,以頭前溪為例,為取得合理且具代表性的河床質,進行河床質的調查。主要研究目的在於,觀察河床粒徑於縱斷面、橫斷面的變化情形,提出頭前溪河床質調查的合理調查位置與數量的建議。並探討網格法於台灣河床質調查的適用性及提出網格法細粒料的修正方法,以提升網格法河床質調查的合理性。
研究成果顯示,當調查目的僅需要表層河床質資料時,網格法比起體積法,可經濟且有效率的獲得河床質縱向以及橫向的變化關係。網格法細粒料修正方法,適用於無細料覆蓋之邊灘與無植生沙洲,並可取代體積法表層資料,當施做區域無表面粗粒化現象時,可取代體積法表、底層資料。網格法交織河相與蜿蜒河相的連接槽河段,粒徑於橫向的變化趨勢明顯,亦即粒徑隨著深槽距的增加而減少。河床質中值粒徑縱向變化呈現隨河口距增加而變小,然而受人工構造物影響嚴重。交織河相與蜿蜒河相,建議取樣位置為連接槽邊灘,縱向距離每500公尺佈下1~2組試驗點。辮狀河相,建議調查位置為寬帶沙洲,每一沙洲均佈下取樣點,單一沙洲設置2~3組網格法。若遇到人工構造物,需於構造物上下游增加施作點。
Bed material is one of important influence factors when concerning about the flow resistance, particle initial movement and sediment transport. In general, grid sampling is more economy and efficient than volumetric sampling. Due to the grain size distribution of bed material is strongly affected by river morphology, riverbed material, and river geology, it is necessary to divide a river into several sub-streams by a river classification system before deciding sampling sites.
The river classification system proposed by C.W. Fu (2005) was adopted in the thesis. The study aims to study the feasibility of sampling locations and sampling numbers and to present adjusted methods of Grain size distribution curve obtained from grid sampling. The Toucian River was selected as an example. Based on the classification system, the river is divided into 6 sub-streams and 24 sets of volumetric sampling and 66 sets of grid sampling were conducted.
Based on the sampling results, the facts reflect that the grain size distribution curve obtained from grid sampling adjusted by the armor fines methods are smooth and reasonable and the method is suitable for the site with non-covered riffle and no plant bar. For the sampling locations and numbers, the results show that in Meandering and Anastomosed river, bed material is finer as the distance between main streamway shorter, 1~2 sampling sites on the riffle of crossing were recommended; in Braided river, 2~3 sampling sites on each bar were suggesred.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 論文內容 2
第二章 文獻回顧 3
2.1 礫石河床質特徵 3
2.1.1 縱向變異性 4
2.1.2 橫向變異性 5
2.1.3 垂直向變異性 8
2.2 河床質調查方法 11
2.2.1 取樣方法 12
2.2.2 不同調查方法的結果差異性與關係 14
2.2.3 粒徑分佈試驗與重量估計方法 17
2.3 網格法取樣數量 19
2.4 調查數量、時間、頻率 21
2.5 河相學與河川分類 22
2.5.1 河相定義 22
2.5.2 既有河川分類系統 23
2.6 綜合討論 29
第三章 研究方法 31
3.1 概述 31
3.2 取樣位置評選 32
3.2.1 縱向位置評選 32
3.2.2 橫向位置評選 34
3.2.3 垂直向變異性 36
3.3 取樣與樣品處理方式 38
3.3.1 網格法採樣與分析 38
3.3.2 網格法細顆粒修正方法 40
3.3.3 體積法採樣與分析 43
3.3.4 樣品處理方法 45
3.4 最低調查數量研究 46
第四章 試驗規劃與試驗結果 47
4.1 試驗位置規劃 47
4.1.1 河川分類 47
4.1.2 取樣位置選取 49
4.2 網格法試驗成果 61
4.3 體積法試驗成果 65
第五章 網格法細粒料修正及網格法與體積法結果比較 74
5.1 網格法修正方法 74
5.2 網格法與體積法的結果比較 80
第六章 調查位置與數量的合理性 84
6.1 縱向與橫向變異性討論 84
6.1.1 橫向變異性討論 84
6.1.2 縱向變異性討論 93
6.2 調查位置與數量的合理性討論 96
6.2.1 調查位置評選 97
6.2.2 試驗數量評估 99
6.3 河床質調查流程 99
第七章 結論與建議 102
7.1 結論 102
7.2 建議 105
參考文獻 106
1.林承坤,「泥沙與河流地貌學」,南京大學出版社, 1992。
2.傅志偉,「河床質調查的方法、位置與頻率-以頭前溪為例」,交通大學,碩士論文,民國94年七月。
3.Brush, L.C., Drainage basins, channels and flow characteristics of selected streams in central Pennsylvania, Professional paper 282-F, U.S.Geological Survey, U.S. Government Printing Office, Washington, D.C., 1961.
4.Church, M.A., Mclean, D.G. and Wolcott, J.F., River bed gravel: sampling and analysis, Sediment Trasport in Gravel-bed River, pp.43-78, 1987.
5.Diplas, P. and J.B. Fripp, Properties of various sediment sampling procedures. Journal of Hydraulic Engineering, Vol. 118, No. 7, pp. 955-970, 1991.
6.Ettema, R., Sampling armor-layer sediments. Journal of Hydraulic Engineering, Vol. 110, No. 7, pp. 992-996, 1984.
7.Fripp, J.B. and Diplas, P., Surface sampling in gravel streams. Journal of Hydraulic Engineering, Vol. 119, No. 4, pp. 473-490, 1993.
8.Haschenburger, J.K. and Wilcock, P.R., Partial transport in a natural gravel bed channel, Water Resources Research, Vol. 39, No. 1, pp. ESG 4-1~4-9, 2003.
9.Hey, R.D. and Thorn, C.R., Accuracy of surface samples from gravel bed material, Proc. Am. Soc. Civ. Engrs. J. Hydraul. Eng., Vol. 109, No.6, pp. 842-851, 1983.
10.Hey, R.D. and Thorn, C.R., 1986, Stable channels with mobile gravel beds, Journal of Hydraulic Engineering, Vol. 112, pp. 671-689, 1986.
11.Kellerhals, R. and Bray, D.I., Sampling procedures for coarse fluvial sediments, Journal of the Hydraulics Division, Vol. 97, pp. 1165-1180, 1971.
12.Bunte, K. and Abt, S. R. , Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and Cobble-Bed Stream for Analyses in Sediment Transport, Hydraulics,and Streambed Monitoring, United States Department of Agriculture, 2001.
13.Leopold, L.B. and Wolman, M.G., River channel pattern-braided, meandering and straight, Professional Paper 282B, United States Geological Survey, 1957.
14.Leopold,L. B., An improved method for size distribution of stream bed gravel, Water Resources Research, Vol. 6, No.5, pp. 1357-1366, 1970.
15.Mosley, M.P. and Tindale, D.S., Sediment variability and bed material sampling in gravel-bed river, Earth Surface Processes and Landforms, Vol. 10, pp. 465-482, 1985.
16.Morris, G.L. and Fan J., Reservoir sedimentation handbook, pp. 8.1-8.41, 1998.
17.Rice, S. and Church, M., Grain size along two gravel-bed rivers: statistical variation, spatial pattern and sedimentary links, Earth Surface Processes and Landforms, Vol. 23, pp. 345-363, 1998.
18.Rosgen, D.L., A classification of nature rivers, Catena, Vol. 22, pp. 169-199, 1994.
19.Shih,S.M. and Komar, P.D., Differential bedload transport rates in a gravel-bed stream: a grain-size distribution approach, Earth Surface Processes and Landforms, Vol. 15, pp. 539-552, 1990.
20.Simons, D.B. and F. Sent�卣k, Sediment Transport Technology. Water and Sediment Dynamics. Water Resources Publications, LLC, pp. 897, 1992.
21.Wolman, M.G., A method of sampling coarse river bed material, Transactions of the American Geophysical Union, Vol. 35, No. 6, pp. 951-956, 1954.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top