跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/20 08:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃耀道
研究生(外文):Huang Yao-Tao
論文名稱:台灣中西部粉土質砂土液化行為分析
論文名稱(外文):Cyclic Behavior Analysis of a Silty Sand in Central Western Taiwan
指導教授:黃安斌黃安斌引用關係
指導教授(外文):Huang An-Bin
學位類別:博士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:263
中文關鍵詞:砂土細料含量反覆阻抗比Laval sample液化潛能圓錐貫入試驗剪力波速
外文關鍵詞:sandfines contentcyclic resistance ratioLaval sampleliquefaction potentialcone penetration testshear wave velocity
相關次數:
  • 被引用被引用:22
  • 點閱點閱:611
  • 評分評分:
  • 下載下載:112
  • 收藏至我的研究室書目清單書目收藏:1
台灣中西部地表有厚層之粉土質細砂,在1999年集集地震時發生廣泛之液化行為。現有簡易法(simplified procedure)液化潛能評估是以乾淨砂做為基準,對於含有細粒料(通過200號篩之材料)之砂土,需依據細料含量(fines content, FC)做修正。使用簡易法程序為此區域粉土質細砂做液化潛能評估常因FC修正與現地試驗方法之選擇而產生不同之結論。唯FC對室內試驗所得砂土不排水強度的影響至今尚未有明確的定論,砂土中所含細料對現地試驗結果之影響所知更為有限。FC的修正在簡易法中之必要性與正確性並無嚴謹之驗證。麥寮砂與員林砂都是台灣中西部具有代表性之砂土。作者使用交通大學過去十數年對麥寮砂所做一系列圓錐貫入(CPT)標定與動靜態三軸試驗結果,做有系統之分析比對。就麥寮砂而言,其剪力波速(Vs)與反覆阻抗比(CRR)會隨FC之增加而降低,FC對Vs-CRR關係並無明顯之影響。在簡易法架構下使用Vs做液化潛能評估時,其FC修正之必要性遠不如現有方法所述明顯。在FC為0與15%時,CPT可視為排水行為,圓錐貫入阻抗(qc)與CRR間之關係無明顯差異。當FC達到30%而CPT成為部分排水狀況時,qc-CRR關係才有明顯改變。此發現說明qc-CRR關係主要受CPT貫入時土層之排水性所影響,而非細料含量本身。唯以上結論是根據重模試體所做試驗而得,研究指出天然砂土受其組構之影響,與重模試體行為有明顯差異。為驗證先前發現是否適用於天然砂土,作者研發使用Laval sampler在原地溫度情況下於粉土細砂中取樣,然後在地表加以冰凍保存與室內試體準備及試驗程序之技術。Laval sample與地表冰凍之成本遠低於將土壤於地層內冰凍然後取樣程序。使用此一技術,作者在員林試驗站取得一系列Laval sample,並在現場進行CPT及剪力波速量測。使用Laval sample進行室內動靜態三軸試驗,並使用bender element為三軸試體進行剪力波速量測。此系列試驗結果首先驗證Laval sample低擾動之特性,其Vs與CRR值明顯高於相同狀態下重模試體所得之結果。與麥寮砂相同,員林砂之Vs與CRR會隨細料之增加而降低。天然及重模員林砂土之Vs-CRR關係與麥寮砂類似,也不受細料含量影響。Laval sample所量得CRR與現地qc之關係其趨勢與麥寮砂重模試體所得結果類似。但天然員林砂內之CPT似乎需要在更高細料含量下才顯現部分排水之行為。此一現象可能受天然沖積砂土中存在許多乾淨砂所組成之排水薄層影響,使得CPT所激發之孔隙水壓極易消散。因此在天然沖積土中CPT即使在FC極高的情況下也可能是排水的行為,而qc-CRR關係之修正必須依靠現地砂土透水性量測之結果來做決定。可能使用之透水性量測方法可以包括CPT孔隙水壓消散試驗。

關鍵字:砂土、細料含量、反覆阻抗比、Laval sample、液化潛能、圓錐貫入試驗、剪力波速
Central Western Taiwan is covered by a thick deposit of alluvial silty fine sand. The Chi Chi earthquake of 1999 triggered extensive soil liquefaction in this area. The simplified procedure commonly used for liquefaction potential assessment starts by considering the granular material as clean sand. For sand with fines (particles passing #200 sieve), an adjustment for the fines content (FC) is required. The back analysis of liquefaction potential using the simplified procedure for the silty sand in this region often results in different conclusions because of the fines content adjustment and in situ test method used for the analysis. There has been no consensus as to how the fines affect the undrained shear strength of silty sands. The knowledge on how fines affect the in situ test results is even more limited. The need and accuracy of FC adjustment in the simplified procedure have not been rigorously verified. Mai Liao sand and Yuan Lin sand can both be considered as typical sand in Central Western Taiwan. The author compiled results from a series of cone penetration tests (CPT) in a calibration chamber and monotonic/cyclic triaxial tests on Mai Liao sand (MLS) and made systematic analyses. For MLS the shear wave velocity (Vs) and cyclic resistance ratio (CRR) decrease with FC. FC does not have a significant effect on the Vs-CRR correlation. Under the framework of simplified procedure there does not appear to be a need for FC adjustment. For FC of 0 and 15%, CPT can be viewed as drained test, and there was no obvious difference in the correlation between cone tip resistance (qc) and CRR as FC changed from 0 to 15%. As FC reached 30%, CPT becomes partially drained, and the effect on qc-CRR correlation becomes significant. This finding shows that it is the drainage conditions not FC itself that affect the qc-CRR correlation. The above conclusion was made entirely from tests on remolded specimens. Research has indicated that due to discrepancies in soil fabrics, there can be significant differences in the behavior between natural and remolded soil specimens. The author used a modified Laval sampler to retrieve undisturbed silty sand samples under ambient temperature and preserved samples by freezing above ground. Techniques of cutting frozen Laval samples and thawing soil specimens in triaxial were developed. The cost of taking Laval sample and freezing above ground is much lower than ground freezing and coring. With this new procedure, the author took a series of Laval samples, performed CPT and field shear wave velocity measurements at a test site in Yuan Lin. Monotonic/cyclic triaxial tests with shear wave velocity measurements using bender elements were conducted on specimens trimmed from the Laval samples. The quality of the Laval samples was verified first. The Vs and CRR values from Laval samples were significantly higher than those of remolded specimens with the same density and stress states. Similar to MLS, the Vs and CRR decrease with FC for Yuan Lin sand (YLS). FC had no effect on the Vs-CRR correlation for both natural and remolded YLS. However, the FC had to be much higher what was learned from MLS for CPT in natural YLS to be partially drained. For CPT in natural alluvial soil, the drainage conditions are strongly influenced by the possible existence of thin layers of clean sand. The effects of drainage during CPT due to these thin permeable layers may not have a direct relationship with the fines content of the silty sand mass. In order to account for the drainage effects, the CPT pore pressure dissipation test may be used as a basis for the qc-CRR correlation adjustments.

Keywords:sand, fines content, cyclic resistance ratio, Laval sample, liquefaction potential, cone penetration test, shear wave velocity
目 錄
中文摘要 i
英文摘要 iii
誌 謝 v
目 錄 vi
表 目 錄 x
圖 目 錄 xii
符號說明 xviii
一、背景 1
1.1 前言 1
1.2 土壤液化潛能評估 4
1.2.1 簡易法評估土壤液化潛能 4
1.2.2 現地取樣與室內試驗評估土壤液化潛能 22
1.3 粉土質砂土強度之影響因素 25
1.3.1 顆粒組構對砂土強度的影響 25
1.3.2 細料含量對砂土強度的影響 31
1.4 麥寮砂之室內試驗研究 38
1.4.1 麥寮砂之基本物理性質 38
1.4.2 麥寮砂之力學行為 47
1.4.3 麥寮砂之室內剪力波速量測 63
1.4.4 CPT在麥寮砂中之室內標定 66
1.5 非擾動砂土試體取樣 81
1.6 背景結語 83
二、研究目的與方法 88
2.1 研究目的 88
2.2 研究方法 90
三、員林試驗站之現地試驗與取樣 92
3.1 員林試驗站之現地試驗規劃與取樣配置 92
3.2 員林民安宮試驗站之非擾動取樣 96
3.3 員林砂之基本物理性質 108
3.4 員林試驗站之現地試驗結果與分析 122
3.4.1 SPT、SCPTU試驗與土壤行為種類指數 122
3.4.2 員林試驗站表面波震測試驗分析 128
3.4.3 員林試驗站簡易法液化潛能分析 131
四、員林砂之室內試驗 135
4.1 試體準備 135
4.1.1 冰凍Laval試體準備 135
4.1.2 非冰凍Laval試體準備 140
4.1.3 重模試體準備 145
4.2 試驗設備 149
4.2.1 動態三軸試驗設備 149
4.2.2 靜態三軸試驗設備 156
4.2.3 剪力波速量測設備 160
4.3 試驗方法與程序 169
4.3.1 冰凍Laval 試體之試驗 169
4.3.2 非冰凍Laval試體之試驗 177
4.3.3 重模試體之試驗 179
4.4. 冰凍與解凍程序對Laval試體品質之影響 181
4.5 剪力波速量測方法 187
五、結果分析與討論 195
5.1 麥寮砂室內試驗結果分析 195
5.1.1 麥寮砂CRR、 與 關係之標定 195
5.1.2 麥寮砂細料含量對CRR、 與 關係之影響 197
5.2 員林砂試驗結果分析 203
5.2.1 員林砂不排水剪力強度 203
5.2.2 員林砂之抗液化強度 210
5.2.3 員林砂之剪力波速 225
5.2.4 員林砂細料含量對現地試驗砂土強度之影響 227
5.2.5 員林砂細料含量對實驗室試驗砂土強度之影響 233
5.3 員林砂CRR、 與 之分析比較 235
5.3.1員林砂CRR與 之分析比較 235
5.3.2 員林砂CRR與 之分析比較 239
5.3.3 液化潛能評估成果與討論 243
六、結論與建議 247
參考文獻 251
學術簡歷 262
參考文獻
Abbiss, C. P., 1981, “Shear Wave Measurement of the Elasticity of Ground,” Geotechnique, Vol.31, No.1, pp.94-104.
Almeida, M.S.S,, Jamiolkowski, M., and Peterson, R.W., 1991, “Preliminary Results of CPT tests in Calcareous Quiou Sand,” Proceedings of the International Symposium on Calibration Chamber Testing, Potsdam, New York, 1991, pp.41-53, Elsevier.
Amini, F., and Qi, G.Z., 2000, “Liquefaction testing of stratified silty sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.126, No.3, pp.208-217.
Andrus, R.D., and Stokoe, K.H., II, 1997, “Liquefaction resistance based on shear wave velocity,” Proc. NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Tech. Rep. NCEER-97-0022, T.L. Youd and I.M. IDRISS, eds., National Center for Earthquake Engineering Research, Buffalo, pp.89-128.
Andrus, R.D., and Stokoe, K.H., II, 2000, “Liquefaction Resistance of Soils from Shear-wave Velocity,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000;126(11):1015-1025.
Been, K., Crooks, J.H., Becker, D.E., and Jefferies, M.G., 1986, “The Cone Penetration Test in Sands: Part I. State Parameter Interpretation A State Parameter,” Geotechnique, Vol.35, No.2, pp.239-249.
Been, K., Jefferies, M.G., J.H.A., and Rothenburg, L., 1987, “The Cone Penetration Test in Sands: Part II. General Inference of State,” Geotechnique, Vol.37, No.3, pp.285-299.
Been, K., Jefferies, M.G., and Hachey, J., 1991, “The Critical State of Sand,” Geotechnique, 41(3):365-381.
Bierschwale, J.G., and Stokoe, K.H., II, 1984, “Analytical evaluation of liquefaction potential of sands subjected to the 1981 Westmorland earthquake,” Geotech. Engrg. Report 95-663, University of Texas,Austin,Tex.
Borden, R.H., 1992, “Boundary Displacement Induced by DMT Penetration,” Proceedings of the International Symposium on Calibration Chamber Testing, Potsdam, New York, 1991, pp.101-18, Elsevier.
Castro, G., 1975, “Liquefaction and cyclic mobility of sands,” Journal of Geotechnical Engineering Division, ASCE, Vol.101, GT6, pp.551-569.
Chen, P.Y., 1977, “Table of key lines in X-ray powder diffraction patterns of minerals in clays and associated rocks,” Department of National Resources Geological Survey Occasional Paper 21, Printed by authority of the state of Indiana Bloomington, Indiana.
De Alba, P., Baldwin, K., Janoo, V., Roe, G., and Celikkol, B., 1984, “Elastic-wave velocities and liquefaction potential,” Geotech. Testing J., 7(2), pp.7-87.
Dobry, R., Stokoe, K.H., II, Ladd, R.S., and Youd, T.L., 1981, “Liquefaction susceptibility from S-wave velocity,” Proc., ASCE, Nat. Convention, In Situ Tests to Evaluate Liquefaction Susceptibility, ASCE, New York.
Dyvik, R., and Madshus, C., 1985, “Laboratory measurement of Gmax using bender element,” Proc. ASCE Annual Convention: Advance in the art of testing soils under cyclic conditions, Detroit, pp.186-196.
Finn, W.D.L., Pickering, D.J., and Bransby, P.L., 1971, “Sand liquefaction in triaxial and simple shear tests,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.SM4, pp.639-659
Finn, W.D.L., Ledbetter, R.H., and Wu, G., 1994, “Liquefaction in silty soils: Design and analysis,” Ground Failures Under Seismic Conditions. Geotechnical Special Publication, No.44, ASCE, pp.51-76.
Fioravante, V., Jamiolkowski, M., Tanizawa, F., and Tatzuoka, F., 1991, “Results of CPT’s in Toyoura Quartz sand,” Proceedings of the International Symposium on Calibration Chamber Testing,” Potsdam, New York, 1991, pp.135-146, Elsevier.
Hardin, B.O., and Richart, F.E., 1963, “Elastic Wave Velocities in Granular Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.89, No.SM1, pp.33-65.
Høeg, K., Dyvik, R., and Sandbaekken, G., 2000, “Strength of Undisturbed versus Reconstituted Silt and Silty Sand Specimens,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.126, No.7, pp.606-617.
Hofmann, B.A., Sego, D.C., and Robertson, P.K., 2000, “In Situ Ground Freezing to Obtain Undisturbed Samples of Loose Sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.126, No.11, pp.979-989.
Hsiao, D.H., Wu, S.E., Lee, C.C., Cho, E.V. and Lin W.F., 2004, “A Study on Fines Content Affect the Static and Dynamic Resistances Based on Inter-granular Void Ratio,” Journal of Engineering Technology and Education, Vol.1, No.2, pp.117-130.
Huang, A.B., Holtz, R.D., and Chameau, J.L., 1991, “A Laboratory Study of Pressuremeter Tests in Clays,” Journal of Geotechnical Engineering Division, ASCE, Vol.117, pp.1549-1567.
Huang, A.B., and Ma, M.Y., 1994, “An Analytical Study of Cone Penetration Tests in Granular Material,” Canadian Geotechnical Journal, to show in February.
Huang, A.B., and Hsu, H.H., 2004, “Advanced Calibration Chambers for Cone Penetration Testing in Cohesionless Soils,” Keynote Lecture, Proceedings, ISC-2 on Geotechnical and Geophysical Site Characterization, Porto, Portugal, Vol.1, pp.147-167.
Huang, Y.T., Huang, A.B., Kuo, Y.C., and Tsai, M.D., 2004, “A laboratory study on the undrained strength of a silty sand from Central Western Taiwan,” Soil Dynamics and Earthquake Engineering, Vol.24, No.9-10, pp.733-743.
Hynes, M.E., and Olsen, R.S., 1999, “Influence of confining stress on liquefaction resistance,” Proc., Int. Workshop on Phys. And Mech. of Soil Liquefaction, Balkema, Rotterdam, The Netherlands, pp.145-152.
Idriss, I.M., 1999, “Presentation notes: An update of the Seed-Idriss simplified procedure for evaluating liquefaction potential,” Proc., TRB Workshop on New Approaches to Liquefaction Anal. Publ. No. FHWARD-99-165, Federal Highway Administration, Washington, D.C.
Ishihara, K., and Watanabe, T., 1976, “Sand liquefaction through volume decrease potential,” Soils and Foundations, Vol.16, No.4, pp.61-70.
Ishihara, K., 1985, “Satibility of natural deposits during earthquakes,” Proc. of the 11th Inter. Conf. on SMFE, San Fransico, Vol.1, pp.221-254.
Ishihara, K., and Koseki, J., 1989, “Discussion on cyclic shear strength of fines-containing sands,” Earthquake geotechnical engineering, Proc. 12th Int. Conf. Soil Mech., Rio de Janeiro, 101-106.
Ishihara, K., 1993, “Liquefaction and flow failure during earthquakes,” Geotechnique 43, No.3, pp.351-415.
Iwasaki, T., Arakawa, T., and Tokida, K., 1982, “Simplified Procedures for Assessing Soil Liquefaction during Earthquakes,” Soils Dynamics and Earthquake Engineering Conference, Southampton, pp.925-939.
Kawaguchi, T., Mitachi, T., and Shibuya, S., 2001, “Evaluation of Shear Wave Travel Time in Laboratory Bender Element Test,” Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, Vol.1, pp.155-158.
Kayen, R.E., Mitchell, J.K., Seed, R. B., Lodge, A., Nishio, S., and Countinho, R., 1992, “Evaluation of SPT-,CPT-, and shear wave-based methods for liquefaction potential assessment using Loma Prieta data,” Proc. 4th Japan-U.S. Workshop on Earthquake Resistant Des. of Lifeline Fac. and Countermeasures for Soil Liquefaction, Tech. Rep. NCEER-92-0019, M. Hamada and T.D. O’Rourke, eds., Vol.1, National Center for Earthquake Engineering Research, Buffalo, 177-204.
Koester, J.P., 1994, “The Influence of fine type and content on cyclic strength,” Gronud Failures Under Seismic Conditions, Geotechnical Special Publication, No.44, ASCE, pp.17-33.
Konrad, J.-M., St-Laurent, S., Gilbert, F., and Leroueil, S., 1995, “Sand Sampling below the Water Table Using the 200mm Diameter Laval Sampler,” Canadian Geotechnical Journal, Vol.32, pp.1079-1086.
Kuerbis, R., Negussey, D., and Vaid, V.P., 1988, “Effect of gradation and fines content on the undrained response of sand,” Proceedings, Hydraulic Fill Structures, Fort Collins. U.S.A., pp.330-345.
Kuribayashi, E., Iwasaki, T. and Tatsuoka, F., 1975, “Effects of stress-strain conditions on dynamic properties of sands,” Proceedings of Japanese Society of Civil Engineers, No. 242, pp.105-114.
La Rochelle, P., Sarrailh, J., Tavenas, F., Roy, and Laroueil, S., 1981, “Causes of Sampling Disturbance and Design of a New Sampler for Sensitive Soils,” Canadian Geotechnical Journal, Vol.18, No.1, pp.52-66.
Lade, P.V., and Yamamuro, J.A., 1997, “Effects of non-plastic fines on static liquefaction of sands,” Canadian Geotechnical Journal, Vol.34, No.6,pp.918-928
Lee, K.L., and Seed, H.B., 1967, “Drained Strength Characteristics of Sands,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93, No.SM6, pp.117-141.
Lin, C.P., Chang, C.C., and Chang, T.S., 2004, “The Use of MSASW Method in the Assessment of Soil Liquefaction Potential,” Soil Dynamics and Earthquake Engineering, Vol.24/9-10, pp.689-698.
Lin, C.P., and Chang, T.S., 2004, “Multi-station analysis of surface wave dispersion,” Soil Dynamics and Earthquake Engineering, Vol.24/11, pp. 877-886.
Liu, A.H., Stewart, J.P., Abrahamson, N.A., and Moriwaki, Y., 2001, “Equivalent Number of Uniform Stress Cycles for Soil Liquefaction Analysis,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001;127(12):1017-1026.
Lodge, A.L., 1994, “Shear wave velocity measurements forit subsurface characterization,” Ph. D. Dissertation, University of California, Berkeley, California.
Mulilis, J.P., Seed, H.B., Chan, C.K., Mitchell, J.K. and Arulanandan, K., 1977, “Effects of sample preparation on sand liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol.103, GT2, pp.91-108.
Nazarian, S., and Stokoe, K.H. II, 1984, “In situ shear wave velocities from spectral analysis of surface waves,” Proceedings of 8th Conference on Earthquake Engineering, San Francisco; Vol.3. pp.38-45.
Ohta, Y., and Goto, N., 1978, “Physical Background of the Statistically Obtained S-Wave Velocity Equation in Terms of Soil Indexes,” Butsuri -Tanko (Geophys. Exploration), Tokyo, 31(1), 8-17 (in Japanese).
Olsen, R.S., and Malone, P.G., 1988, “Soil Classification and Site Characterization Using the Cone Penetration Test,” Proceedings, Penetration Testing 1988, De Ruiter Balkema, Rotterdam, ISOPT-I, Orlando, Florida. Edited by De Ruiter, Balkema, Rotterdam, Vol.2, pp.887-893.
Perlea, V.G., 2000, “Liquefaction of cohesive soils,” Soil Dynamics and Liquefaction 2000, ASCE Geotechnical Special Publication, No.107, 58-76.
Polito, C.P., 1999, “The effects on nonplastic and plastic fines on the liquefaction of sandy sands,” Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Va.
Polito, C.P., and Martin, Ⅱ, J.R., 2001, “Effects of nonplastic fines on the liquefaction resistance of sands,” Journal of Geotechnical and Geoenvironmental engineering, May 2001, pp.408-415.
Pyke, R., Seed, H.B., and Chan, C.K., 1975, “Settlement of Sands under Multi-directional Loading,” Journal of the Geotechnical Engineering Division, ASCE, Vol.101, No.GT4, pp.379-398.
Robertson, P.K., and Campanella, R.G., 1985, “Liquefaction potential of sands using the CPT,” Journal of Geotechnical Engineering Division, ASCE, Vol.111, GT3, pp.384-403.
Robertson, P.K., 1990, “Soil classification using CPT,” Can. Geotech. J., Ottawa, 27(1), pp.151-158.
Robertson, P.K., Woeller, D.J., and Finn, W.D.L., 1992, “Seismic cone penetration test for evaluating liquefaction potential under cyclic loading,” Can. Geotech. J., Ottawa, Vol.29, pp.686-695.
Robertson, P.K., and Wride, C.E., 1998, “Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test,” Canadian Geotechnical Journal, Vol.35, pp.442-459.
Rowe , P.W., 1959, “Measurement of the Coefficient of Consolidation of Lacustrine Clay,” Geotechnique, 9(3), pp.107-118
Seed, H.B., and Idriss, I.M., 1971, “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.97, No.SM9, pp.249-274.
Seed, H.B., and Peacock, W.H., 1971, “Test procedure for measuring soil liquefaction characteristics,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.SM8, pp.1099-1119.
Seed, H.B., Idriss, I.M., Makdisi, F.I., and Banerjee, N., 1975, “Representation of Irregular Stress Time History by Equivalent Uniform Stress Series in Liquefaction Analyses,” EERC 75-29, Earthquake Engineering Research Center, University of California, Berkeley.
Seed, H.B., Pyke, R.M., and Martin, G.R., 1978, “Effects of multidirectional shaking on pore pressure development in sands,” Journal of Geotechnical Engineering Division, ASCE, Vol.104, GT1, pp.27-44.
Seed, H.B., 1979, “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes,” Journal of Geotechnical Engineering Division, ASCE, Vol.105, GT2, pp.201-255.
Seed, H.B., Idriss, I.M. and Arango, I., 1983, “Evaluation of liquefaction potential using field performance data,” Journal of Geotechnical Engineering Division, ASCE, Vol.109, No.3, pp.458-482.
Seed, H.B., 1983, “Earthquake-resistant design of earth dam,” Proc., Symp. Seismic Des. of Earth Dams and Caverns, ASCE, New York, pp.41-46.
Seed, H.B., Tokimatsu, K., and Harder, L.F., 1984, “The influence of SPT procedures in evaluating soil liquefaction resistance,” report UCB/EERC-84-15, Earthquake Engineering Research Center, University of California, Berkeley.
Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M., 1985, “The Influence of SPT Procedures, in Soil Liquefaction Resistance Evaluation,” Journal of Geotechnical Engineering Division, ASCE, Vol.111, No.2, pp.1425-1445.
Seed, H.B., and De Alba, P., 1986, “Use of SPT and CPT Tests for Evaluating the Liquefaction Resistance of Sands,” Proceedings of the ASCE Specialty Conference In-Situ’86: Use of In-Situ Tests in Geotechnical Engineering, Blacksburg, pp.281-302.
Seed, R.B., and Harder, L.F., 1990, “SPT-based analysis of cyclic pore pressure generation and undrained residual strength,” Proceedings of the B. Seed Memorial Symposium, Vol., 2, pp.351-376.
Shen, C.K., Vrymoed, J.L., and Uyeno, C.K., 1977, “The effects of fines on liquefaction of sands,” Proc., 9th Int. Conf. on Soil Mech. and Found. Engrg. Vol.2, pp.381-385.
Shibata, T. and Teparaska, W., 1988, “Evaluation of liquefaction potentials of soils using cone penetration tests,” Soils and Fdns., Vol.28, No.2, pp.49-60.
Shirley, D.J., 1978, “An Improved Shear Wave Transducer,” Journal of the Acoustical Society of American, Vol.63, No.5, May, pp.1643-1645.
Singh, S., 1996, “Liquefaction characteristics of silts,” Geotechnical and Geological Engineering, Vol.14, No.1, pp.1-19.
Skempton, A.K., 1986, “Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging, and overconsolidation,” Geotechnique London, 36(3), pp.425-447.
Stark, T.D., and Olson S.M., 1995, “Liquefaction Resistance Using CPT and Field Case Histories,” Journal of Geotechnical Engineering, ASCE, Vol.121, No.12, pp.856-869.
Stokoe, K.H., II, Lee, S.H.H. and Knox, D.P., 1985, “Shear Moduli Measurement under the Triaxial Stresses,” Advances in the Art of Testing Soil under Cyclic Condition, ASCE, New York, pp.166-185.
Stokoe, K.H., II, and Nazarian, S., 1985, “Use of Rayleigh waves in liquefaction studies,” Measurement and use of wave velocity for evaluating dynamic soil properties, R.D. Woods, ed., ASCE, New York, pp.1-17.
Stokoe, K.H., II, Roësset, J..M., Bierschwale, J.G. and Aouad, M., 1988, “Liquefaction potential of sands from shear wave velocity,” Proc., 9th World Conf. on Earthquake Engrg., Vol.III, pp.213-218.
Sykora, D.W., 1987, “Creation of a Data Base of Seismic Shear Wave Velocities for Correlation Analysis,” Geotech. Lab. Miscellaneous Paper GL-87-26, U.S. Army Engineering Waterway Experiment Station. Vicksburg, Miss.
Tatsuoka, F., Ochi, K., Fujii, S., and Okamoto, M., 1986, “Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods,” Soils and Foundations, Vol.26, No.3, pp.23-41.
Thevanayagam, S., 1998, “Effects of fines and confining stress on undrained shear strength of silty sands,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.6, June, ASCE, pp.479-490.
Thevanayagam, S., Fiorillo, M., and Liang, J., 2000, “Effects of non-plastic fines on undrained cyclic strength of silty sands,” Geotechnical Special Publicatin, Vol.107, Aug5-Aug8, ASCE, pp.77-91.
Tokimatsu, K. and Yoshimi, Y., 1983, “Empirical correlation of soil liquefaction based on SPT N-values and fines content,” Soils and Foundations 23, No.4, pp.56-74.
Tokimatsu, K. and Uchida, A., 1990, “Correlation between liquefaction resistance and shear velocity,” Soils and Found., Tokyo, Vol.30, No.2, pp.33-42.
Troncoso, J.H., 1986, “Critical State of Tailing Silty Sands for Eathquake Loadings,” Soil Dynamics and Earthquake Engineering, Vol.5, No.3, pp.248-252.
Vaid, V.P., 1994, “Liquefaction of silty soils,” Ground Failures Under Seismic Conditions, Geotechnical Special Publication, No.44, ASCE, pp.1-16.
Vaid, Y. P., Sivathayalan, S., and Stedman, D., 1999, “Influence of Specimen-reconstituting Method on the Undrained Response of Sand,” Geotechnical Testing Journal, Vol.22, No.3, pp.187-196.
Viggiani, G. and Atkinson, J. H., 1995, “Interpretation of bender element tests,” Geotechnique, Vol.45, No.1, pp.149-154.
Wang G.Q., Zhou X.Y., Zhang P.Z., and Igel H., 2002, “Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan earthquake,” Soil Dynamics and Earthquake Engineering, pp.73-96.
Wroth, C.P., 1984, “The interpretation of in situ soil test,” 24th Rankine Lecture, Geotechnique, Vol.34, No.4, pp.449-489.
Xenaki, V.C., and Athanasopoulos, G.A., 2003, “Liquefaction resistance of sand-silt mixtures : an experimental investigation of the effect of fines,” Soil Dynamics and Earthquake Engineering, 23 (2003), pp.183-194.
Yamamuro, J.A., and Wood, F.M., 2004, “Effect of depositional method on the undrained behavior and microstructure of sand with silt,” Soil Dynamics and Earthquake Engineering, Vol.24, No.9-10, pp.751-760.
Yoshimi, Y., Tokimatsu, K., and Ohara, J., 1994, “In situ liquefaction resistance of clean sands over a wide density range,” Geotechnique 44, No.3, pp.479-494.
Youd, T.L., and Idriss, I.M., eds., 1997, Proceeding NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Nat. Ctr. For Earthquake Engineering Res. State University of New York at Buffalo.
Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder Jr., L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., and Stokoe, K.H., II, 2001, “Liquefaction Resistance of Soils : Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.127, No.10, pp.817-833.
Zlatovic, S., and Ishihara, K., 1997, “Normalized behavior of very loose non-plastic soil: Effects of fabric,” Soils and Foundation, Tokyo, Vol.37, No.4, pp.47-56.
王統立, 2000, “高細料含量粉土細砂中CPT之標定試驗,” 國立交通大學土木工程系, 碩士論文。
林靜怡, 2003, “細粒料對粉土細砂小應變勁度之影響,” 國立交通大學土木工程系, 碩士論文。
郭毓真, 2004, “細粒料含量對麥寮砂動態行為之影響,” 國立交通大學土木工程系, 碩士論文。
許鈞程, 1999, “細料含量對圓錐貫入試驗之影響,” 國立交通大學土木工程系, 碩士論文。
黃安斌, 1998, “多功能土壤試驗儀,” 中華民國專利, 新型第131130號,專利權人行政院國家科學委員會, 專利期間86年11月1日至95年9月28日。
黃安斌,林志平,紀雲曜,古志生,蔡錦松,李德河,林炳森, 2005, “台灣中西部粉土細砂液化行為分析,” 地工技術, 第103期, 第5-30頁。
張嘉偉, 1997, “圓錐貫入試驗在粉砂中之標定,” 國立交通大學土木工程系, 碩士論文。
蔡明道, 2002, “細粒料含量對粉土細砂不排水強度之影響,” 國立交通大學土木工程學系, 碩士論文。
蔡榮燦, 1999, “砂土組構及傳波速度,” 國立中央大學土木工程學系,碩士論文。
蔡錦松,劉衍志,周立德,劉福鎮, 2001, “標準貫入試驗與能量檢測,” 地工技術, 第83期, 第5-12頁。
謝祥暉, 2001, “回填土壤剪力波特性與抗液化強度相關性之研究,” 國立海洋大學河海工程學系, 碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top