(54.236.58.220) 您好!臺灣時間:2021/02/27 18:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐欣瑩
論文名稱:利用多衛星測高資料改善全球重力異常模型以及淺海區重力異常
論文名稱(外文):Improved Determinations of Global Gravity Anomaly Model and Shallow-Water Gravity Anomalies from Multi-Satellite Altimetry
指導教授:黃金維黃金維引用關係
學位類別:博士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:110
中文關鍵詞:衛星測高重力異常
外文關鍵詞:gravity anomalyaltimetry
相關次數:
  • 被引用被引用:1
  • 點閱點閱:812
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:1
本論文的內容主要是致力於改善全球海洋重力異常模型以及淺海區重力異常。本研究結合Seasat, Geosat/GM, Geosat/ERM, ERS-1/35day, ERS-1/GM, ERS-2, 以及 T/P等七種衛星測高任務資料來推求全球海洋重力異常模型以及全球平均海水面模型,以2’X 2’的解析度涵蓋全球南緯80度到北緯80度的區域範圍。全球平均海水面模型透過與T/P以及ERS-1的平均海水面模型進行比較,可分別得出5.0公分以及3.1公分的均方根值。在全球選擇出十二個區域,進行船測重力異常與全球重力異常模型之比較,得出其差值之均方根值最大為13.4mgals,最小為3.0mgals。

  為改善衛星測高的資料品質,本研究從資料偵錯以及資料型態兩方面著手,採用一種非線性的濾波函數對沿軌跡的測高資料進行粗差偵測,以及採用海水面高度值一次差作為資料型態,研究成果顯示可以得出較佳的重力異常。本研究選擇東海海域以及台灣海峽作為改善淺海區重力異常的研究區域,在此兩區域比較兩個不同的全球海洋測高重力異常模型,將兩模型的差異值進行分析討論,可以得出重力異常的差異與海潮模式的選擇、海水面高度值的中誤差以及海深有其相關性。

  為改善淺海區重力異常,本研究採用不同的資料型態搭配計算方法產生三種推求重力異常的方法進行測試:第一種方法是採用最小二乘預估法,資料型態採用海水面高度值一次差以及海水面高度值的梯度值;第二種方法是採用沿軌跡的垂線偏差值作為資料型態以最小二乘預估進行計算重力異常;第三種方法是採用最小二乘預估將沿軌跡垂線偏差組成網格,再以inverse Vening Meinesz公式進行計算。以上三種方法在台灣海峽進行淺海區重力異常計算,並與船測重力進行比較,分別得出其差值的均方根為9.06,10.26,10.44以及10.73 mgals;在東海區域分別得到的結果是9.59,9.77,13.10,11.86 mgals。由此可知採用海水面高度值一次差以及海水面高梯度值作為測高資料型態可以得出較佳的重力異常成果。對於陸地沿岸的淺海區重力異常推求,若加入沿岸陸地重力資料,可以明顯改善淺海區的重力異常,本研究在台灣海峽沿岸進行測試,得出差值的均方根為8.22mgals。
CHAPTER 1 INTRODUCTION 1
1.1 Development of Satellite Altimetry………………………………………….1
1.1.1 Past Satellite Altimetry Missions…..……………………………….1
1.1.2 Current and Future Satellite Altimetry Missions……………… 5
1.2 Objectives and Outline………………….………………………………….13

CHAPTER 2 MARINE GRAVITY ANOMALIES FROM SATELLITE ALTIMETRY 15
2.1 Introduction………………………………………………………………...15
2.2 Marine Gravity Field from Altimetry……………………………………15
2.2.1 Overview…………………………………………………………..15
2.2.2 Remove-restore Technique……………………………………….. 17
2.2.3 Altimeter Data Types…………………………………………….18
2.3 Methods of Marine Gravity Anomalies from Altimetry………………20
2.3.1 Method 1: Least Squares Collocation………..……………………20
2.3.2 Method 2: Inverse Venning Meinesz Formula…………………….24
2.3.3 Method 3: Fourier Transform with Deflection of Vertical…….…..25
2.3.4 Method 4: Inverse Stokes Integral …………………………...27
2.4 Radar Altimeter Data………………………………………………………29
2.4.1 Altimetry Data and Observations………………………………… 29
2.4.2 Time-averaging of SSH…………………………………………...32
2.5 Multi-Satellite Altimeter Data Processing…………………………………. 33
2.5.1 Altimetry Data Base……………………………………………… 33
2.5.2 Averaging SSH to Reduce Variability and Noise………………….35
2.5.3 Choice of Ocean Tide Model…………………………………….. 37

CHAPTER 3 GLOBAL MODELS OF MEAN SEA SURFACE AND GRAVITY ANOMALY 41
3.1 Introduction……………………………………………………………….. 41
3.2 Forming North and East Components of DOV…………………………….42
3.2.1 Computing Along-track DOV……………………………………. 42
3.2.2 Removing Outliers and Gridding DOV……………………..…….44
3.3 Conversions from DOV to MSSH and Gravity Anomaly…………………..47
3.4 Computation and Analysis of Global MSSH Model………………………..49
3.5 Computation and Analysis of Global Gravity Anomaly Model…………….55

CHAPTER 4 DATA PROCESSING AND METHODS OF GRAVITY DERIVATION OVER SHALLOW-WATERS 58
4.1 Introduction………………………………………………………………..58
4.2 Data Processing:Outlier Detection and Filtering…………….…………..59
4.3 Results of Tests………………………..…...……….…………………….70

CHAPTER 5 GRAVITY ANOMALY OVER EAST CHINA SEA AND TAIWAN STRAIT: CASE STUDY AND ANALYSIS 74
5.1 Introduction………………………………………………………………...74
5.2 Comparison of Two Global Gravity Anomaly Grids over ECS and TS……77
5.3 Coastal Land and Sea Data for Accuracy Enhancement…………………... 84
5.4 Outlier Distribution……...…………………………………………………85
5.5 Case Studies………………………………………………………………..88
5.5.1 The East China Sea…………………………………………………..88
5.5.2 The Taiwan Strait…..………………………………………………...93

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 100
6.1 Conclusions…………………………………………………………….. 100
6.2 Recommendations……………………………………………………… 102

REFERENCES 103
Andersen, O.B., Knudsen, P., and Tscherning, C.C. (1996) Investigation of methods for global gravity field recovery from the dense ERS-1 geodetic mission altimetry. In: Rapp R, Nerem RS, Cazenave A (eds), Global gravity field and temporal variations. IAG Symposium 116. Springer, Berlin Heidelberg New York, pp. 218-226.
Andersen, O. and Knudsen, P. (1998) Global marine gravity from the ERS-1 and Geosat geodetic mission altimetry. J. Geophys. Res., 103, pp. 8129-8137.
Andersen, O.B. and Kundsen, P. (2000) The Role of satellite altimetry in gravity field modeling in coastal areas, Phys. Chem. Earth (A), 25, 1, pp. 17-24.
Andersen, O.B., Knudsen, P. and Trimmer, R. (2001) The KMS2001 Global Mean Sea Surface and Gravity Field, IAG2001 Scientific Assembly, Budapest, Hungary, September.
Andersen, O.B., Knudsen, P. and Trimmer, R. (2005) Improved high resolution altimetric gravity field mapping (KMS2002 global marine gravity field). Proc., IAG Symposia, 127, IUGG Sapporo, 2003, Springer, Berlin.
Anzenhofer, M. and Shum, C.K. (2001) Coastal Altimetry and Applications. Rep of Dept of Geodetic Science and Surveying, in press, Ohio State University, Columbus.
Archiving, Validation, and Interpretation of Satellite Oceanographic Data (1996) AVISO User Handbook for Merged TOPEX/Poseidon Products, 3rd Ed. Toulouse, France.
Balmino Moynot, G.B., Sarrailh, M. and Vales, N. (1987) Free air gravity anomalies over the oceans from SEASAT and GEOS-3 altimetry data, EOS Trans. AGU, 68, pp. 17-19.
Basic, T. and Rapp, R.H. (1992) Ocean wide prediction of gravity anomalies and sea surface heights using GEOS-3, SEASAT and GEOSAT altimeter data, and ETOPO5U bathematric data, Report No. 416, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio.
Bilitza, D. (1997) International reference ionosphere - status 1995/96.Adv. Space Res., 20, (9), pp. 1751-1754.
Cazenave, A. and Royer, J.Y. (2001) Applications to marine geophysics, in: Satellite Altimetry and Earth Sciences: a Handbook of Techniques and Applications, Fu, L.L., and Cazenave, A. (ed.), Academic Press, San Diego.
Chen, S.A. (2001) Determinations of tide, circulation and eddied over the South China Sea using TOPEX/POSEIDON altimeter data. PhD thesis, National Chiao Tung University, Hsinchu, Taiwan.
De Boor, C. (1978) A practical guide to splines. Springer, Berlin.
Deng, A., Featherstone, W., Hwang, C. and Berry, P. (2002) Waveform retracking of ERS-1, Mar. Geod., in press.
Deng, X., Featherstone, W.E., Hwang, C. and Berry, P.A.M. (2001) Estimation of Contamination of ERS-2 and POSEIDON Satellite Radar Altimetry Close to the Coasts of Australia, paper submitted to Mar. Geod..
Eanes, R. (1999) Improved ocean tide model from satellite altimetry. Fall Meeting 1999, Am. Geophys Un, San Francisco.
Eren, K. (1980) Spectral Analysis of Geos-3 Altimeter Data and Frequency Domain Collocation, OSU, Rep. 297.
Fairhead, J.D. and Green, C.M. (2001) Pushing the resolution boundaries of marine satellite gravity, IAG 2001 Scientific Assembly, Budapest.
Fu, L.-L., and Cazenave, A. (Eds), (2001) Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. Academic Press, San Diego.
Fu, L.-L. (editor) (2003) Wide-Swath Altimetric Measurement of Ocean Surface Topography, JPL Publication 03-002, Jet Propulsion Laboratory, Pasadena, CA, pp. 67. (ftp://ftp-oceans.jpl.nasa.gov/pub/llf/WSOAreportFinal2.pdf)
Fu, L.L. and Rodriguez, E. (2004) High-Resolution Measurement of Ocean Surface Topography by Radar Interferometry for Oceanographic and Geophysical Applications, American Geophysical Union, San Francisco.
Gerald, C.F., and Wheatley, P.O. (1994) Applied Numerical Analysis, 5th Ed, Addison-Wesley, New York.
Gomez, V., Maravall, A. and Pena, D. (1999) Missing observations in ARIMA models: skipping approach versus additive outlier approach, J. Econometrics, 88, (2), pp. 341-363.
Haxby, W.F., Karner, G.D., La Brecque, J.L., and Weissel, J.K. (1983) Digital images of combined oceanic and continental data sets and their use in tectonic studies, EOS Trans, 64, pp. 995-1004.
Haxby, W.F. (1987) Gravity field of the world’s oceans. A portrayal of gridded geophysical data derived from Seasat radar altimeter measurement of the shape of the ocean surface, National Geophysical Data Center, Boulder, CO.
Heiskanen, W.A. and Moritz, H. (1985) Physical Geodesy. Reprint, Institute of Physical Geodesy, Tech. University of Graz, Austria.
Hernandez, F. and Schaeffer, P. (2000) Altimetric Mean Sea Surfaces and Gravity Anomaly maps inter-comparisons AVI-NT-011-5242-CLS, CLS Ramonville St Agne.
Hipkin, R., (2000) Modeling the geoid and sea-surface topography in coastal areas. Phys. Chem. Earth (A), 25, (1), pp. 9-16.
Hsu, H.Y. (1997) Global Marine Geoid from Multi-Satellite Altimetry and It’s application, MSD thesis of department of civil engineering, National Chiao Tung University, Hsinchu, Taiwan. (in Chinese)
Hsu, S., Liu, C., Shyu, C., Liu, S., Sibue, J., Lallemand, S., Wang, C. and Reed, D. (1998) New gravity and Magnetic Anomaly Maps in the Taiwan-Luzon region and their preliminary interpretation, TAO, 9, 3, pp. 509-532.
Hwang, C. (1989) High precision gravity anomaly and sea surface height estimation from Geo-3/Seasat altimetry date, Report No. 399, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio.
Hwang, C. and Parsons, B. (1995) Gravity anomalies derived from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimetry and ship gravity : A case study over the Reykjanes Ridge, Geophys. J. Int.,122, pp. 551-568.
Hwang, C. and Parsons, B. (1996) An optimal procedure for deriving marine gravity from multi-satellite altimetry, Geophys. J. Int., 125, pp. 705-719.
Hwang, C. (1997) Analysis of some systematic errors affecting altimeter-derived sea surface gradient with application to geoid determination over Taiwan. J. Geod., 71, pp. 113-130.
Hwang, C. (1998) Inverse Vening Meinesz formula and deflection-geoid formula: application to prediction of gravity and geoid over the South China Sea. J. Geod., 72, pp. 304-312.
Hwang, C., Kao, E.C. and Parsons, B. (1998) Global Derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data. Geophys. J. Int., 134, pp. 449-459.
Hwang, C., Hsu, H. and Jang, R. (2002) Global mean sea surface and marine gravity anomaly from multi-satellite altimetry: applications of deflection-geoid and inverse Vening Meinesz formulae, J. Geod., 76, pp. 407-418.
Hwang, C., Hsu, H.Y. and Deng, X. (2004) Marine gravity anomaly from satellite altimetry: a comparison of methods over Shallow Waters, International Association of Geodesy Symposia, 126, pp. 59-66, Springer, Berlin.
Hwang, C., Shum, C.K. and Li, J.C. (Eds.) (2004a) Satellite Altimetry for Geodesy, Geophysics and Oceanography. International Association of Geodesy Symposia, 126, Springer, Berlin.
Jacobs, G.A., Hur, H.B. and Riedlinger, S.K. (2000) Yellow and East China Seas response to winds and currents. J. Geophys. Res., 105, (C9), pp. 21947-21968.
Jan, S., Chern, C.S., Wang, J. and Chao, S.Y. (2004) The anomalous amplification of M-2 tide in the TS. Geophys. Res. Lett., 31, (7), Art. No. L07308.
Kaiser, R. (1999) Detection and estimation of structural changes and outliers in unobserved components, Comp. Stat., 14, (4), pp. 533-558 .
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D. (1996) The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteol. Soc., 77, pp. 437-471.
Knudsen, P. (1987) Estimation and modeling of the local empirical covariance function using gravity and satellite altimeter data, Bull. Geodesique., 61, pp. 145-160.
Koch, K.R. (1970) Gravity anomalies for ocean areas from satellite altimetry, Proceedings of the Second Marine Geodesy Symposium, Marine Technology Society, Washington, D.C.
Koch, K.R. (1987) Parameter Estimation and Hypothesis Testing in Linear Models, Springer, Berlin.
Lefevre, F., Le Provost, C. and Lyard, F.H. (2000) How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea. J. Geophys. Res., 105, (C4), pp. 8707-8725.
Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H. and Olson, T.R. (1998) The Development of Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. Rep NASA/TP-1998-206861, National Aeronautics and Space Administration, Greenbelt, MD.
Le Traon, P.Y. and Ogor, F. (1998) ERS-1/2 orbit improvement using TOPEX/POSEIDON: The 2 cm challenge. J. Geophys. Res., 103, pp. 8045-8057.
Lemoine, F.G, Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M, Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H. and Olson, T.R. (1998) The Development of Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. Rep NASA/TP-1998-206861, National Aeronautics and Space Administration, Greenbelt, MD.
Levitus, S., Monterey, G.I. and Boyer, T. (1997) Seasonal Variability of Dynamic Height and its Fourier Analysis. NOAA NESDIS Atlas 15, U.S. Gov. Printing Office. Wash., D.C.
Li, J. and Sideris, M. (1997) Marine gravity and geoid determination by optimal combination of satellite altimetry and shipborne gravimetry data. J. Geod., 71, pp. 209-216.
Liang, C.K. (1983) The Adjustment and Combination of Geos-3 and Seasat Altimeter Data. Rep 346, Dept of Geodetic Science and Surveying, Ohio State University, Columbus.
Lillibridge, J.L., Smith, W.H.F, Scharroo, R. and Sandwell, D.T. (2004) The Geosat geodetic mission twentieth anniversary edition data product. AGU 2004 Fall meeting, San Francisco.
Matsumoto, K., Takanezawa, T. and Ooe, M. (2000) Ocean Tide Models Developed by Assimilating TOPEX/POSIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan. J. Oceanogr., 56, pp. 567-581.
Matsumoto, K., Sato, T., Takanezawa, T., and Ooe, M. (2001) GOTIC2: A Program for Computation of Oceanic Tidal Loading Effect. J. Geod. Soc., Japan, 47, pp. 243-248.
Moritz, H. (1980) Advanced Physical Geodesy, Herbert Wichmann, Karlsruhe.
Niwa, Y. and Hibiya, T. (2004) Three-dimensional numerical simulation of M-2 internal tides in the East China Sea. J. Geophys. Res., 109, (C4), Art. No. C04027.
NOAA (1997) The Complete Geosat Altimeter GDR Handbook, NODC Laboratory for Satellite Altimetry. Silver Spring, Maryland.
Olgiati, A., Balmino, G., Sarrailh, M., and Green, C.M. (1995) Gravity anomalies from satellite altimetry: comparison between computation via geoid heights and via deflections of the vertical. Bull. Geod., 69, pp. 252-260.
Pearson, R.K. (2002) Outliers in process modelling and identification, IEE Trans on Control Tech, 10, pp. 55-63.
Pope, A.J. (1976) The statistics of residual and the detection of outliers, Tech. Rep. TR-NOS-65-NGS-1, National Ocean Survey, Rockville.
Randel, D.L., VonderHaar, T.H., Ringerud, M.A., Stephens, G.L., Greenwald, T.J. and Combs, C.L. (1996) A new global water vapor dataset. Bull. Am. Meteol. Soc., 77, pp. 1233-1246.
Rapp, R.H. (1983) The determination of geoid undulations and gravity anomalies from Seasat altimeter data. J. Geophys. Res., 88, pp. 1552-1562.
Rapp, R.H. (1985) Detailed gravity anomalies and sea surface height derived from Geo-3/Seasat altimeter data, Report No. 365, Department of Geodetic Science and Surverying, The Ohio State University, Columbus, Ohio.
Rapp, R. and Balasubramania, N. (1992) A Conceptual Formulation of a World Height System. Rep. No. 421, Dept. of Geod. Sci. and Surveying, Ohio State University, Columbus, Ohio.
Rapp, R.H. and Basic, T. (1992) Oceanwide gravity anomalies from Geos-3, Seasat and Geosat altimeter data, Geophys. Res. Lett., 19, pp. 1979-1982.
Rapp, R.H. and Yi, Y. (1997) Role of ocean variability and dynamic ocean topography in the recovery of the mean sea surface and gravity anomalies from satellite altimeter data. J. Geod., 71, pp. 617-629.
Sandwell, D.T. (1992) Antarctic marine gravity field from high-density satellite altimetry, Geophys. J. Int., 109, pp. 437-448.
Sandwell, D.T. and Smith, W.H.F. (1997) Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res., 102, pp. 10039-10054.
Sandwell, D.T. and Smith, W.H.F. (2001) Bathymetric estimation. In: Fu. L,-L. and Canezave, A. (eds), Satellite Altimetry and Earth Sciences, pp 442-457.
Sandwell, D.T. and Smith, W.H.F. (2001) Bathymetric estimation. In Fu, L.-L. and Cazenave, A. (Eds) Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, Academic Press, New York.
Schwarz, K.P., Sideris, M.G. and Forsberg, R. (1990) The use of FFT techniques in physical geodesy. Geophys. J. Int., 100, pp. 485-514.
Seeber, G. (1993) Satellite Geodesy. de Gruyter, Berlin.
Shum, C.K., Woodworth, P.L., Andersen, O.B., Egbert, G.D., Francies, O., King, C., Klosko, S.M., Le Provost, C., Li, X., Molines, J.M., Parke, M.E., Ray, R.D., Schlax, M.G., Stammer, D., Tierney, C.C., Vincent, P. and Wunsch, C. (1997) Accuracy assessment of recent ocean tide models. J. Geophys. Res., 102, pp. 25173-25194.
Sideris, M.G. (1996) On the use of heterogeneous noisy data in spectral gravity field modelling methods, J. Geod., 70, pp. 470-479.
Smith, W.H.F. and Sandwell, D.T. (2004) Improved global marine gravity field from reprocessing of Geosat and ERS-1 radar altimeter waveforms. AGU 2004 Fall meeting, San Francisco.
Smith, W.H.F. and Wessel, P. (1990) Gridding with continuous curvature splines in tension, Geophys., 55, pp. 293-305.
Torge, W. (1989) Gravimetry, de Gruyter, Berlin.
Trimmer, R.G., Andersen, O. and Driscoll, M.L. (2001) Estimating altimetry 5´×5´ mean gravity anomaly regional accuracies. IAG 2001 Scientific Assembly, Budapest.
Tscherning, C.C. and Rapp, R.H. (1974) Closed covariance expressions for gravity anomalies geoid undulations and deflections of the vertical implied by anomaly degree variance models, Rep 208, Dept of Geod Sci, Ohio State University, Columbus.
Tscherning, C. C. (1997) Geoid determination by Least Squares Collocation, International school for the determination and use of the Geoid, International geoid service, DIIAR, Politecnico di Milano, Italy, pp. 110-135.
Wang, C.K. (2004) Features of monsoon, typhoon and sea waves in the Taiwan Strait. Mar. Geores. & Geotech., 22, (3), pp. 133-150.
Wang, H. (1999) Satellite Altimeter Data Processing and Its Applications in China Seas and Vicinity, PHD thesis of Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, Hubei 430077, P.R. China. (in Chinese)
Wang, Y.M. (1993) On the optimal combination of potential coefficient model with terrestrial gravity for FFT geoid computation, Manuscr. Geodaet., 18, pp. 406-416.
Wang, Y.M. (2000) The Satellite Altimeter Data Derived Mean Sea Surface GSFC98, Geophys. Res. Lett., 27, pp. 701-704.
Wessel, P. and Smith, W.H.F. (1995) New version Generic Mapping Tools release, EOS Trans, AGU, pp.76.
Wolf, P.R. and Ghilani, C.D. (2002) Elementary Surveying, An Introduction to Geomatics, 10th Ed., Pearson Education International, Upper Saddle River, New Jersey.
Wunsch, C., and Zlotnicki, V. (1984) The accuracy of altimetric surfaces. Geophys. J. R. astr. Soc., 78, pp. 795-808.
Yanagi, T., Morimoto, A. and Ichikawa, K. (1997) Seasonal variation in surface circulation of the East China Sea and the Yellow Sea derived from satellite altimetric data. Cont. Shelf. Res., 17, (6), pp. 655-664.
Yi, Y. (1995) Determination of Gridded Mean Sea Surface from TOPEX, ERS-1 and GEOSAT Altimeter Data. Rep 434, Dept. of Geodetic Science and Surveying, The Ohio State University, Columbus.
Zhang, C. and Blais, J.A.R. (1993) Recovery of gravity disturbances from satellite altimetry and by FFT techniques: a synthetic study, Manuscr. Geodaet., 18, pp. 158-170.
Zhang, C. and Sideris M.G. (1995) Gravity disturbances from GEOSAT data and forward geopotential models in the Labrador Sea, International Association of Geodesy Symposia 113, convened and edited by Sunkel H. and I. Marson, Springer, pp. 376-385.
Zwally, H.J. and Brenner, A.C. (2001) Ice sheet dynamics and mass balance, in LL Fu and A Cazenave (eds), Satellite altimetry and earth sciences, pp. 351-370, Academic press, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔