跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/04 23:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李源翌
研究生(外文):Yuan-Yi Li
論文名稱:考慮韋伯製程平均發生偏移下之製程能力評估方法
論文名稱(外文):Process Capability Measurement for Weibull Processes with Control Chart Mean Shift Consideration
指導教授:彭文理彭文理引用關係
指導教授(外文):Wen-Lea Pearn
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:53
中文關鍵詞:製程能力指標非常態韋伯分配beta分配F分配製程偏移
外文關鍵詞:process capability indexnon-normalWeibull distributionbeta distributionF distributionmean shift
相關次數:
  • 被引用被引用:0
  • 點閱點閱:530
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:1
製程能力指標是用來衡量製程所製造之產品是否符合規格的能力,並且作為提供商品品質保證的工具。自從1980年代,Motorola公司提出6個標準差的觀念後,許多統計學家質疑提倡6個標準差的品質工程師,為何在衡量製程能力時,需先對製程平均做1.5倍標準差偏移量的調整。Bothe學者(2002)針對此問題,利用管制圖的監控機制來偵測製程平均發生偏移的情況,發現隨著不同的抽樣個數可以有不同的調整量,以達到管制圖有50%的偵測率。但Bothe 的研究是在製程資料服從常態分配的假設下,實務上,非常態分配的製程在業界是較常發生的,且常態製程之假設敏感地影響偏移量之調整。因此本論文針對三種非常態分配(韋伯、beta、F分配)的製程,求得製程平均之調整量,並利用非常態製程所適用的 指標做計算上之調整。最後以實例來說明如何在非常態製程中,且考慮製程平均會發生變動的情況下,來調整製程能力指標 之計算。
The process capability indices have been proposed to assess the ability of a process to meet preset specification limits and provide quality assurance. The process capability index has been one of the most popular index used in the manufacturing industry dealing with problem of measuring reproduction capability of process to enhance product development with very low fraction of defectives(in Parts Per million; PPM). Motorola, Inc. introduced its Six Sigma quality initiative to the world in the 1980s. Some quality practitioners questioned why the Six Sigma advocates claim it is necessary to add a 1.5 shift to the average when estimating process capability. Bothe (2002) provides a statistical reason for including such a shift in the process average that is based on the chart’s subgroup size. Data in Bothe’ study was assumed to be approximately normally distributed. What affects on process capability estimates when the process output is not from approximate normally distribute. This paper calculate the mean shift adjustments and addresses this problem computing reliable estimates for capability index for non-normal (Weibull、beta and F distribution) process when the statistically adjustments is considered. For illustration purpose, an application example is presented.
1. Introduction 1
1.1. Research Background and Motivation 1
1.2. Research Purpose and Objectives 2
1.3. Research Organization 3
2. Process Capability Adjustment for Normal Process 4
2.1. Detection Power Analysis 4
2.2. Bothe's Consideration for 1.5-sigma Adjustment 4
3. Process Capability Adjustment for Weibull Process 6
3.1. The Weibull Distribution 6
3.2. The Sampling Distribution of Weibull Process 10
3.3. Estimating the Parameters of Weibull Process 12
3.4. The Detection Power for Weibull Process Under 1.5-sigma Adjustments 13
3.5. The Modified Mean Adjustments for Weibull Process 14
3.6. The Capability Adjustment for Weibull Process 16
3.7. Comparing with Simulate 18
4. Process Capability Adjustment for Beta Process 20
4.1. The Beta Distribution 20
4.2. The Modified Mean Adjustments for Beta Process 23
5. Process Capability Adjustment for F Process 25
5.1. The F Distribution 25
5.2. The Modified Mean Adjustments of F Process 28
6. An Application Example 29
7. Conclusion 31
References 32
Appendix 34
1. Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23, 17-26.
2. Chen, L. K., Cheng, S. W. and Spiring, F. A. (1988). A new measure of process capability: . Journal of Quality Technology, 20, 162-173.
3. Cygan P., Krishnakumar, B., and Laghari, J. R. (1989). Lifetimes of polypropylene films under combined high electric field and thermal stresses, IEEE Transactions on Electrical Insulation, 24, 619-625.
4. Bothe, D. R. (2002).Statistical Reason for the 1.5 shift. Quality Engineering, 14(3), 479-487.
5. Kalbfleisch, J.G. (1985). Probability and Statistical Inference, 2nd edition. Springer-Verlag, New York.
6. Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18, 41-52.
7. Kotz, S. and Johnson, N. L. (1993).Process Capability Indices. Chapman & Hall, London, U.K.
8. Kotz, S. and Lovelace, C. (1998). Process Capability Indices in Theory and Practice. Arnold, London, U.K.
9. Kotz, S. and Johnson, N. L. (2002). Process Capability indices – a review, 1992-2000. Journal of Quality Technology, 34(1), 1-19.
10. Kotz, S. and Johnson, N. L. and N.Balakrishnam (1995). Continuous Univariate Distributions. A Wiley-Interscience Publication, New York.
11. Chen, K. S. and Pearn, W. L. (1997). An application of non-normal process capability indices, Quality and Reliability Engineering International, 13, 355-360.
12. Pearn, W. L., Kotz, S. and Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology, 24(4), 216-233.
13. Pearn, W. L., Lin, G. H. and Chen, K. S. (1998). Distribution and inferential properties of process accuracy and process precision indices. Communications in Statistics: Theory & Method, 27(4), 985-1000.
14. Lu, X. M. and Peng N. F. (2003).The Approximation of the Distribution Function of Sum of Independent and Identical Weibull distributions. National Chiao Tung University, Taiwan.
15. Pyzdek, T. (1995). Process Capability Analysis Using Personal Computers, Quality. Engineering, 4(3), 419-440.
16. Ross, S. (1992). A First Course in Probability, fifth edition. Prentice-Hall International.
17. Taguchi, G. and Hsiang, T. C. (1985). A tutorial on quality control and assurance –the Taguchi methods. ASA Annual Meeting, Las Vegas, Nevada.
18. Vännman, K. (1997). Distribution and moments in simplified from for a general class of capability indices. Communications in Statistics: Theory & Methods, 26, 159-179.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top