跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 14:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊東錡
研究生(外文):Tung-Chi Yang
論文名稱:晶圓針測廠考量針測卡資源限制下主生產排程系統之設計
論文名稱(外文):The Design of Master Production Scheduling System with Constraint of the Probe Card Resource for Wafer Probing Factory
指導教授:鍾淑馨鍾淑馨引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:180
中文關鍵詞:晶圓針測針測卡序列相依設置時間製程規格能力混合整數規劃
外文關鍵詞:Wafer probingProbe cardSequence dependent setup timeProcess capabilityMixed integer programming
相關次數:
  • 被引用被引用:2
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
晶圓針測製程(Wafer Probing)接續於晶圓製造之後,為半導體業之前段製程中最後一道加工步驟,其訂單達交績效最被重視。以往相關之排程文獻僅探討系統中主資源之運用而忽略了附屬資源之重要性,因此本文探討之晶圓針測主生產排程規劃問題,除了考量訂單交期、順序相關之設置時間、機台產能與製程規格能力等限制外,還加入了附屬資源-針測卡之數量限制,以符合實務所需。
有鑑於此,本文首先初估機台與針測卡產能是否足以負荷總體訂單之需求;其次為兼顧訂單達交績效並有效利用瓶頸資源與附屬資源之產能,本文以一混合整數規劃模式搭配一產出規劃流程,求解各訂單各產品最佳的生產順序與針測卡之使用配置。此外文中另發展一針測卡新增機制,協助公司與其協力廠間決定出最有效的針測卡調度模式,以善用未被利用之機台產能。而若所規劃之主生產排程中,尚有未被安排排程之產能缺口,本文則將之作為臨時到臨訂單需求之允諾依據,以迅速確認此筆訂單需求是否能夠及時滿足。
實證結果顯示,本文中各筆訂單在交期限制下,各機台皆以最小之設置時間進行排程,以充分利用機台與針測卡產能。另外當機台產能充裕卻出現未能滿足之需求量時,能有效的決定出須借用之針測卡別以善用原本未能利用之機台產能。整體而言,本文發展之規劃模式,兼顧求解效率與實務性,可作為回覆上層需求管理單位之交貨依據,並能給予下層生產控制單位明確之生產排程,以利其進行生產活動控制。
The wafer probing process is the last operation in the front-end of wafer fabrication, and its due-date oriented performance is extremely concerned. Formerly researches related to wafer probing scheduling problem merely investigate the utilization of main resource in the system, while the auxiliary resources were out of consideration. In order to fit in with reality, the wafer probing scheduling system in this thesis will consider constraints of order due date, sequence dependent setup time, machine capacity, and process capability. It futhermore considers the constraint of probe card resource.
In this study, we first estimate the capacity of machines and probe cards to see if their supply can bear the aggregate demand of orders. Then, we construct a mixed integer programming model that matched with a production planning procedure so as to simultaneously considering the delivery performance of orders, the highly capacity utilization of the bottleneck and auxiliary resource. The planning results contain the production sequence of each product of orders and the schedule of each probe card. Furthermore, to fully utilize machine’s capcacity, we develop a “probe card adding procedure” to assist the company borrowing the right types of probe cards from his supplier. Finally, if there exists spare capacity based on the result of MPS, this system can rapidly determine whether a new coming order can be accepted or not.
The experimental results showed that based on due date constraints, all orders will be scheduled with minimum setup time to properly utilize the capacity of machines and probe cards. Moreover, when there is some surplus capacity on machines but the demand is not fully satisfied, this system will determine which kind of probe cards would be added to make good use of the capacity of the machine. Hence, the mechanism proposed in this thesis can provide effective and efficient planning results, which are valuable for replying committable amount to demand management department and for detail scheduling in shop floor production control.
摘要 I
Abstract II
誌謝 IV
目錄 VI
圖目錄 VIII
表目錄 IX
符號一覽表 XIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍與限制 3
1.4 研究方法與步驟 4
第二章 文獻探討 6
2.1 晶圓針測作業之介紹 6
2.2 晶圓針測相關設備 8
2.3 產能規劃 9
2.4 中短期平行機台生產排程問題 11
2.4.1 等效平行機台排程問題之相關文獻 12
2.4.1.1 派工法則 12
2.4.1.2 模擬分析法 15
2.4.1.3 啟發式演算法 15
2.4.1.4 數學規劃法與混合法 19
2.5 考量附屬資源之相關研究 21
第三章 模式構建 28
3.1 問題定義與分析 28
3.2 整體邏輯與架構 32
3.3產能推估模組 35
3.3.1 非瓶頸工作站產能推估機制 37
3.3.2 瓶頸工作站產能推估機制 39
3.3.3 針測卡產能推估機制 42
3.3.3.1 針測卡數量估算模式 43
3.3.3.2 針測卡提供之產能負荷比例估算模式 44
3.4 產出規劃模組 46
3.4.1 瓶頸工作站生產排程機制 48
3.5 訂單規劃模組 75
第四章 模擬驗證 80
4. 1 系統環境說明 80
4.1.1 生產環境資料 80
4.1.2 生產排程規劃假設 87
4. 2 產能推估模組之執行過程 87
4.2.1 非瓶頸工作站產能推估機制 88
4.2.2 瓶頸工作站產能推估機制 90
4.2.3 針測卡產能推估機制 95
4.2.3.1 針測卡數量估算模式 95
4.2.3.2 針測卡提供之產能負荷比例估算模式 99
4. 3 產出規劃模組之執行過程 102
4.3.1 瓶頸工作站生產排程機制 102
4. 4 訂單規劃模組之執行過程 154
4. 5 成效分析 161
第五章 結論與未來研究方向 167
5. 1 結論 167
5. 2 未來研究方向 168
參考文獻 169
附錄 173
[1] Atherton, L. F., and Atherton, R. W., Wafer fabrication: factory performance and analysis Kluwer Academic, 1995.
[2] Chen, D., Peter B. LUH, L. S. Thakur and J. Moreno Jr., “Optimization-based manufacturing scheduling with multiple resources, setup requirements, and transfer lots,” IIE Transactions, vol. 35, pp. 973-985, 2003.
[3] Carmon, T. F. and R. C. Leachman, “Scheduling semiconductor device test operations on multihead testers,” IEEE Transactions on Semiconductor Manufacturing, vol. 42, no. 4, pp. 422-423, NOV. 1999.
[4] Chen, T.R. and T.C. Hsia, “Job Shop Scheduling with Multiple resources and an Application to a Testing Facility,” IEEE, vol. 2, pp. 1564-1570, Dec. 1994.
[5] ELLIS, K. P., Y. LU and E. K. BISH, “Scheduling of Wafer Test Processes in Semiconductor Manufacturing,” International Journal of Production Research, vol. 42, no. 2, pp. 215-242, 2004.
[6] Eom, D. H., H. J. Shin, I. H. Kwun and S. S. Kim, “Scheduling jobs on parallel machines with sequence-department family set-up times,” International Journal of Advanced Manufacturing Technology, vol. 19, pp. 926-932, 2002.
[7] Franca, P. M., M. Gendreau, G. Laporte and F. M. Muller, “A tabu search heuristic for the multiprocessor scheduling problem with sequence dependent setup times,” International Journal of Production Economics, vol. 43, pp. 79-89, 1996.
[8] Hung, Y. F. and Cheng, G. J., “Hybrid capacity modeling for alternative machine types in linear programming production planning,” IIE Transactions, vol. 34, pp. 157-165, 2002.
[9] Jackson, J. R., “Simulation research on job shop production,” Naval Research Logistics Quarterly, vol. 4, no. 4, pp. 287-295, 1957.
[10] Kurz, M.E. and Askin, R.G., “Heuristic scheduling of parallel machines with sequence-dependent set-up times,” International Journal of Production Research, vol. 39, no. 16, pp. 3747–3769, 2001.
[11] Leachman, R.C., “Modeling techniques for automated production planning in the semiconductor industry,” Optimization in industry, T.A. Ciriani and R.C. Leachman, Ed. Wiley, Chichester, pp. 1-30, 1993.
[12] Leachman, R.C. and Carmon, T.F., “On capacity modeling for production planning with alternative machine types,” IIE Transactions, vol. 24, pp. 62-72, 1992.
[13] Lee, Y.H. and Pinedo, M., “Scheduling jobs on parallel machines with sequence-dependent setup times,” European Journal of Operational Research, vol. 100, pp. 464–474, 1997.
[14] Lin, J.T., Wang, F.T. and Lee, W.T., “Capacity constrained scheduling for a logic IC facility,” International Journal of Production Research, vol. 42, no. 1, pp. 79-99, 2004.
[15] Mandel, M., and Mosheiov, G., “Minimizing maximum earliness on parallel identical machines,” Computers and Operations Research, Vol. 28, pp. 317-327, 2001.
[16] Park, Y., Kim, S. and Lee, Y., “Scheduling jobs on parallel machines applying neural network and heuristic rules,” Computers & Industrial Engineering, vol. 38, no. 1, pp. 189–202, 2000.
[17] Pearn, W.L., Chung, S.H., Chen A.Y. and Yang, M.H., “A case study on multistage IC final testing scheduling problem with reentry,” International Journal of Production Economics, vol. 88, no. 3, pp. 257-267, 2004.
[18] Piersma, N., and van Dijk, W., “A local search heuristic for unrelated parallel machine scheduling with efficient neighborhood search,” Mathematical and Computer Modeling, vol. 24, no. 9, pp. 11-19, 1996.
[19] Pinedo, M. and X. Chao, “Operations scheduling with applications in manufacturing and services,” McGraw-Hill, New York, 1999.
[20] Schragenheim, E. and Dettmer, H. W., Manufacturing at warp speed :optimizing supply chain financial performance, The St. Lucie Press/APICS Series on Constraints Management, 2001.
[21] Uzsoy, R., Lee, C.-Y. and Martin-Vega, L.A., “Scheduling Semiconductor Test Operations: Minimizing Maximum Lateness and Number of Tardy Jobs on A Single Machine,” Naval Research Logistics, vol. 39, no. 39, pp. 369-388.
[22] Vollmann, T. E., W. L. Berry and D. C. Whybark, Manufacturing Planning and Control Systems, Richard D. Irwin, Inc., 1992.
[23] Wang, K. J. and T. C. Hou, “Modeling and resolving the joint problem of capacity expansion and allocation with multiple resources and a limited budget in the semiconductor testing industry,” International Journal of Production Research, vol. 41, pp. 3217-3235, Sep. 2003.
[24] Wroblewski, K. and Krawczynski, R., “Priority rules in production flow control,” Material Flow, vol. 2, pp. 167-177, 1985.
[25] Wu, M. C., Y. Hsiung and H. M. Hsu, “A Tool Planning Approach Considering Cycle Time Constraints and Demand Uncertainty,” Int J Advance Manufacturing Technology, vol. 26, pp. 565-571, 2005.
[26] Yalaoui, F and C. Chu, “An efficient heuristic approach for parallel machine scheduling with job splitting and sequence-dependent setup times,” IIE Transactions. vol. 35, pp. 183-190, 2003.
[27] Zhang, Z., M.T. Zhang, S. Niu and L. Zheng, “Capacity planning with reconfigurable kits in semiconductor test manufacturing” International Journal of Production Research, vol. 44, no. 13, pp. 2625-2644, 1 July, 2006.
[28] 中原大學ERP研究中心
[29] 王啟仲,「半導體製造多頭測試機器排程問題研究」,國立清華大學工業工程與工程管理研究所,碩士論文,1999年。
[30] 台灣積體電路股份有限公司
[31] 吳凱文,「IC 封裝廠之短期生產排程模式」,國立清華大學工業工程與工程管理研究所,碩士論文,1997年。
[32] 黃羑群,「球格陣列封裝製程之主生產排程系統設計」,國立交通大學工業工程與管理研究所,碩士論文,2004年。
[33] 楊明賢,「晶圓針測廠等效平行機台排程問題之研究:模式、演算法與應用」,國立交通大學工業工程與管理研究所,博士論文,2001年。
[34] 戴于婷,「IC封裝廠中期生產規劃系統之構建」,國立交通大學工業工程與管理研究所,碩士論文,1998年。
[35] 郭佩純,「多屬性待測品之半導體針測區機台排程模擬分析」,國立清華大學工業工程與工程管理研究所,碩士論文,2002年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊