跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/06 19:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾仲銓
研究生(外文):Chung-Chuan Tseng
論文名稱:新穎非對稱準光子晶體共振腔之製程技術與其WGM模態特性探討
論文名稱(外文):Fabrication and WGM Modal Characteristics for Novel Asymmetric Dodecagonal Quasi-Photonic Crystal Micro-cavities
指導教授:李柏璁李柏璁引用關係
指導教授(外文):Po -Tsung Lee
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:53
中文關鍵詞:光子晶體雷射
外文關鍵詞:photonic crystallaser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文當中,我們使用三維有限時域差的方法去計算出兩種非對稱性光子晶體雷射的共振頻譜、和共振場圖。這些有效的計算方法幫助我們能最佳化我們的光子晶體設計,並且把這些設計確實的應用在我們的製程當中。

  在製程的篇章中,主要分為兩大部分去介紹,分別是準光子晶體雷射底部是高反射率布拉布拉格反射鏡及底部為中央支柱兩種結構的製程。首先主動層及DBR使用直接接合的技術成功接合。我們並成功的把光子晶體寫在主動層與DBR接和的晶片上面以及成功的製造出底部為中央支柱的準光子晶體雷射。以上的製程步驟和遇到的困難以及解決方法都詳細的寫在內容中。

  最後,利用自行架設的micro-PL系統把我們製程出來的所有元件做量測與討論。從量測的結果與模擬的結果去討論,可以得知我們量測到的發光模態與我們預測的是相同的。並且比較不同支柱大小的準光子晶體雷射的特性以及將有中央支柱的結構與傳統的對稱性薄膜做比較。
We calculated the resonance spectra and resonance mode profile of the 12-fold quasi-Periodic photonic crystal microcavity Laser with bottom DBR and 12-fold quasi-Periodic photonic crystal microcavity Laser with central post by 3-dimension finite-difference time-domain method. These help us to optimize our photonic crystal laser. And two kind of novel asymmetric 12-fold quasi-periodic photonic crystal microcavity Laser were designed.

In fabrication, we introduced the procedures for two different structures. In the bottom DBR structure, the wafer fusion technology was developed. And the photonic crystal pattern was defined on the bonded sample successfully. In the central post structure, the different size of central post is achieve by well design photonic crystal pattern and different wet etching process time.

The basic characteristic of 12-fold quasi-periodic photonic crystal microcavity Laser with central post were measured by a micro-scale photoluminescence system, Furthermore, the characteristic were compared with different post size and membrane structure. From the measurement, we observe the influence of the central post.
Content
Abstract (In Chinese)…………………………………………ii
Abstract (In English)…………………………………………iii
Acknowledgements…………………………………………………iv
Content………………………………………………………………v
List of Figures…………………………………………………vii

Chapter 1 Introduction
1.1. Introduction to Photonic Crystal…………………………1
1.2. Photonic Crystals Lasers……………………………………5
1.3. Motivation………………………………………………………7
1.4. An overview of this thesis…………………………………9

Chapter 2  Modal Analysis of Asymmetric 12-fold QPC Microcavities
2.1. Introduction……………………………………………………9
2.2. Simulation method……………………………………………10
2.2.1 Finite Difference Time Domain Method……………10
2.2.2 Mode Analysis by 3D FDTD Method…………………12
2.3. Device Structure……………………………………………15
2.3.1. 12-fold QPC Microcavity with Bottom DBR……………15
2.3.2. 2D Photonic Crystal Cavity Laser With Central-
Post…………………………………………………………17
2.4. Simulation result……………………………………………18
2.4.1. Modal Analysis of 12-fold QPC microcavity with
Bottom DBR…………………………………………………18
2.4.2. Modal Analysis of 12-fold QPC microcavity with
Central Post………………………………………………22
2.5. Conclusion………………………………………………………27
Chapter 3 Fabrication Process of Asymmetric 12-fold QPC Microcavities
3.1. Introduction………………………………………………27
3.2. Fabrication of 12-fold QPC Microcavity With Bottom
DBR…………………………………………………………27
3.2.1. Preparation for Wafer Bonding………………………27
3.2.2. Process for Direct Wafer Bonding…………………29
3.2.3. Photonic Crystal Pattern Definition and
Transfer…………………………………………………31
3.3. Fabrication Results & Conclusion……………………33
3.3.1. Bonding with MQWs / DBR Interface…………………33
3.3.2. Bonding with SiO2 / SiO2 Interface………………33
3.4. Fabrication of Two-Dimensional Photonic Crystal Lasers With Central-Post…………………………………………35
3.4.1. Epitaxial Structure and Dielectric Material Deposition……………………………………………………………35
3.4.2. Photonic Crystal Patterns Definition and Dry-Etching Processes…………………………………………………36
3.4.3. Construct of Central Post Structure ………………37
3.5. Conclusion……………………………………………………43

Chapter 4 Measurement Results
4.1. Introduction…………………………………………………45
4.2. Basic Lasing Characteristics……………………………46
4.2.1. Measurement Results from Central-Post Structures…46
4.3. Conclusion…………………………………………………51

Chapter 5 Conclusion………………………………………………52
[1]  E. Yablonovitch, Phys. Rev. Lett., vol. 58, pp. 2059-2062, 1987.
[2] E. Yablonovitch, Phys. Rev. Lett., 1987, 58, 2059
[3] S. John, Phys. Rev. Lett., 1987, 58, 2486.
[4]  J. D. Joannopoulous, R. D. Meade, and J. N. Winn, Princeton University Press, 1995.
[5]  H.-Y. Ryu, S.-H. Kim, H.-G. Park, J.-K. Hwang, Y.-H. Lee, and J.-S. Kim, Appl. Phy. Lett., vol. 80, pp. 3883-3885, 2002.
[6]  K. Hennessy, C. Reese, A. Badolato, C.-F. Wang, A. Imamoglu, G. Jinm, S. Shi, and D.-W. Prather, Appl. Phys. Lett., vol. 83, pp. 3650-3652, 2003
[7]  O. Painter, J. Vuckovic, and A. Scherer, J. Opt. Soc. Amer. B, vol. 16, pp. 275-285, 1999.
[8]  H.-Y. Ryu, H.-G. Park, and Y.-H. Lee, IEEE J. Select. Topics Quantum Electron., vol. 4, pp. 891-908, 2002.
[9] T. D. Happ, A. Markard, M. kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, J. Vac. Sci Technol. B, vol. 19, pp. 2775-2778, 2001
[10] M. Boroditsky, T. F. Karuss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl.Phys. Lett., vol. 75, pp.1036-1038, 1999.
[11] A. J. Danner, J. J. Raftery Jr., N. Yokouchi, and K. D. Choquette, Appl. Phys. Lett., vol. 84, pp. 1031-1033, 2004.
[12] S. Olivier, C. J. M. Smith, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, IEEE J. Quantum Electron, vol. 38(7), pp. 814-816, 2002.
[13] S. Noda, A. Chutinan, and M. Imada, Nature, vol. 407, pp. 608-610, 2000.
[14] O. Painter, R.-K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science, vol. 284, pp. 1819-1821, 1999.

[15] Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature (London), vol.425, pp. 944-947, 2003.
[16] J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park,Y. H. Lee, and D. H. Jang, Appl. Phys. Lett., vol. 76, pp. 2982–2984, 2000.
[17] J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee,
IEEE Photon. Technol. Lett., vol. 12, pp. 1295–1297, 2000.
[18] H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, Appl. Phys.
Lett., vol. 79, pp. 3032–3034, 2001.
[19] H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, Appl. Phys.
Lett., vol. 80, pp. 3883–3885, 2002.
[20] P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, Appl. Phys. Lett. 89, 231111, 2006
[21] Hong-Gyu Park, Sun-Kyung Kim, Soon-Hong Kwon, Guk-Hyun Kim, Se-Heon Kim, Han-Youl Ryu, Sung-Bock Kim, and Yong-Hee Lee, IEEE Photon. Technol. Lett., vol. 15, pp. 1327–1329, 2003
[22] T. Baba, IEEE J. Select. Topics Quantum Electron., vol.3, pp. 808–830, 1997.
[23] J. Chaloupka, J. Zarbakhsh, and K. Hingerl, Phys. Rev. B, vol. 72, 085122, 2005
[24] K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, IEEE J. Sel. Top. Quantum
Electron. 9, 1355, 2003.
[25] Srinivasan and O. Painter, Opt. Express vol. 10, 670-684, 2002.
[26] T. Baba, IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 808–830, 1997.
[27] Se-Heon Kim,* Sun-Kyung Kim, and Yong-Hee Lee Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea, PHYSICAL REVIEW B 73, 235117, 2006
[28] M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, J. Appl. Phsic., vol. 60, p. 2987, 1986.

[29] J. R. Cao,a) Po-Tsung Lee, Sang-Jun Choi, Roshanak Shafiiha, Seung-June Choi, John D. O’Brien, and P. Daniel Dapkus, J. Vac. Sci. Technol., B 20.2., Mar/Apr, pp.618-621 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊