(3.215.180.226) 您好!臺灣時間:2021/03/06 13:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊宗勳
論文名稱:電漿重組產氫之電極設計與參數影響研究
論文名稱(外文):A Study on Hydrogen-Rich Gas Production from Plasma Reforming of Diesel
指導教授:尹慶中
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院碩士在職專班精密與自動化工程組
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:73
中文關鍵詞:電槳重組產氫氫能引擎部份氧化法
外文關鍵詞:Plasma Hydrogen ProductionPlasma Fuel ReformerReformingPartial oxidation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文針對柴油燃料於小型電漿重組器的氫氣產出特性進行研究。研究方法以火花放電方式產生電弧,使碳氫燃料與含氧氣體混合物離子化之後,產生部分氧化及重組效應以產出富氫氣體。實驗參數為氧氣/柴油莫耳數比、重組器腔體流道形狀參數、輸入功率、電弧頻率等。
整個系統包括燃料氣體供應系統、參數控制系統、電漿系統、產物分析系統。其中電弧產生系統係由10KW直流電源供應器,其配合(5KHz~50KHz)頻率轉換器、升壓變壓器來完成高頻且高壓低電流輸出;反應器本體則是自行設計。產物分析系統,主要是利用氣相層析儀 (Gas Chromatography,GC) 來進行即時出口端氣體的即時定量分析工作。
由實驗結果得知重組器電漿及油氣分布重合度影響氫氣產出效率極大,利用流場數值模擬優化重組器構型,並透過調整O/C比來提高氫氣產出效率,在相同的燃料進料率下,適當的O/C 比會有較高的氫氣產出濃度。隨著燃料進料率的增加,氫氣的產出濃度會降低。電極表面之積碳會隨系統操作時間增長而增厚,進而使得轉化效率與氫氣產出濃度降低。此外,進料採用渦流方式,可提高氫氣產出濃度與莫耳流率。氣體於反應通道內駐留時間越長,氫氣產出濃度越高。本研究於最佳之參數設定下,氫氣產出濃度最高可達17 Vol%。
In this study, a small plasma diesel reformer was constructed to investigate the effects of design parameters on the performance of this apparatus. The methodology is to use a high voltage electric arc generator to ionize the hydrocarbon fuel and air mixture. The ionized gas is transformed into hydrogen-rich gas. The major parameters studied were O/C ratio, diesel flow rate, arc frequency, and reaction chamber diameter.

The system equipment included a fuel and air supply system, a plasma diesel reformer, an electric arc control system and a data acquisition system. One 10KW DC power supply with inverter and transformer was used to provide a high-voltage, low-current electric arc. The composition of the product gases from the reformer was measured by gas chromatography.

The results showed that higher production rate of hydrogen were obtained with a good plasma-fuel mixing. Numerical simulation for reaction chamber design and proper O/C ratio input were used to optimize hydrogen production rate. It also showed that carbon deposit grew on the electrodes with increased operation time. As the deposit grew, the hydrogen production and rate of fuel conversion decreased. As a solution, adopting mixture feeding swirl will improve hydrogen production and fuel conversion. As a whole, the best hydrogen concentration and production rate was 17Vol%.
第一章 緒論 1
1.1 研究源起 1
1.2 文獻回顧 5
1.2.1 石化燃料製氫法 5
1.2.2 水電解 7
1.2.3 光電化學法(Photoelectrochemical method) 8
1.2.4 熱化學法製氫技術 8
1.2.5 再生能源 8
1.2.6 生質能 9
第二章 電漿重組產氫 13
2.1 電漿概述 13
2.2 電漿重組反應製氫原理 31
2.2.1 蒸汽重組 (STEAM REFORMING,SR) 34
2.2.2 部份氧化法 (PARTIAL OXCIDATION,POX) 35
2.2.3 自熱合重組 (AUTOTHERMAL REFORMING,ATR) 35
第三章 實驗設備及研究方法 36
3.1 實驗設備 36
3.2 研究方法 42
第四章 結果與討論 47
4.1 最佳電漿分佈/油氣分佈重合度分析結果 47
4.2 電漿診斷技術建立 56
4.3 反應器設計修正 62
4.4 建置重組氣體成分即時分析設備 63
4.5 柴油重組產氫實驗操作參數篩選 64
第五章 結論與未來展望 68
參考文獻 69
作者簡介 73
[1] 柯賢文,"未來的氫能經濟",科學發展,399期,P69~P7588,95年3月。
[2] 魏大欽、黃曉鳳,“微波電漿技術應用於甲烷重組之研究”,中原大學化學工程學系碩士論文,民國90 年。
[3] Mutaf-Yardimci, O., Saveliev, A.V., Fridman, A.A. and Kennedy, L.A.,“Employing plasma as catalyst in hydrogen production,” Int. J. HydrogenEnergy, Vol. 23, No. 12, 1998, pp. 1109-1111.
[4] 宋裕隆,"燃料電池用甲醇重組器之測試研究",能源季刊,第24卷,P69~P88,83年1月。
[5] Gesser,H.D.Hunter N.R. and Probawono, D. “ The CO2 Reforming of Natural Gas in a Silent Discharge Reactor”, Plasma chem. Plasma Process. 18, 241(1998).

[6] Sekiguchi, H., Mori, Y., “Steam plasma reforming using microwave
discharge,” Thin Solid Films, Vol. 435, 2003, pp. 44-48.
[7] Yao, S., Nakayama, A. and Suzuki, E., “Acetylene and hydrogen from
pulsed plasma conversion of methane,” Catalysis Today, Vol. 71, 2001, 2001, pp.219-223.
[8] Sobacchi, M.G., Saveliev, A.V., Fridman, A.A., Kennedy, L.A., Ahmed, S.,and Krause, T., “Experimental assessment of a combined plasma/catalytic system for hydrogen production via partial oxidation of hydrocarbon fuels, “ Int. J. Hydrogen Energy, Vol. 27, 2002, pp. 635-642.
[9] Pietruszka, B., Anklam, K. and Heintze, M., “Plasma-assisted partial
oxidation of methane to synthesis gas in a dielectric barrier discharge,”
Applied Catalysis A: General, Vol. 261, 2004, pp. 19-24.
[10] Bromberg, L., Cohn, D.R. Rabinovich, A. and Alexeev, N., “Plasma
catalytic reforming of methane. Int. J. Hydrogen Energy,” Vol. 24, 1999,
pp. 1131-1137.
[11] Bromberg, L., Cohn, D.R. and Rabinovich, A., “Plasma reformer-fuel cell system for decentralized power applications,” Int. J. Hydrogen Energy,Vol. 22, No. 1, pp. 83-94.
[12] Bromberg, L., Cohn, D.R., Rabinovich, A. and Heywood, J.B.,
“Emissions reductions using hydrogen from plasmatron fuel converters,”
Int. J. Hydrogen Energy, Vol. 26, 2001, pp. 1115-1121.
[13] Bromberg, L., Cohn, D.R., Rabinovich, A., Surma, J.E. and Virden, J.,“Compact plastron-boosted hydrogen generation technology for vehicular applications,” Int. J. Hydrogen Energy, Vol. 24, 1999, pp. 341-350.
[14] Cohn, D.R., Rabinovich, A., Titus, C.H. and Bromberg, L., “Near-term
possibilities for extremely low emission vehicles using onboard
plasmatron generation of hydrogen,” Int. J. Hydrogen Energy, Vol. 22, No.7, 1997, pp. 715-723.
[15] Jamal, Y., Wagner, T. and Wyszynski, M.L., “Exhaust reforming gasolineat moderate temperatures, Int. J. Hydrogen Energy,” Vol. 21, No. 6, 1996,pp. 507-519.
[16] Fulcheri, L. and Schwob, Y., “From methane to hydrogen, carbon black and water,” Int. J. Hydrogen Energy, Vol. 20, No. 3, 1995, pp. 197-202.
[17] Das, L.M., “On-Board Hydrogen storage systems for automotive
application,” Int. J. Hydrogen Energy, Vol. 21, No. 9, 1996, pp. 789-800.
[18] Lutz, A. E., Bradshaw, R.W., Bromberg L. and Rabinovich A.,
“Thermodynamic analysis of hydrogen production by partial oxidation
reforming,” Int. J. Hydrogen Energy, Vol. 29, 2004, pp. 809-816.
[19] Spiess, F.J., Suib, S.L., Irie, K., Hayashi, Y., Matsumoto, H., “Metal
effect and flow rate effect in the hydrogen production from methane,”
Catalysis Today, Vol. 89, 2004, pp. 35-45.
[20] Han, J.S., Kim, I.S. and Choi, K.S., “Purifier-integrated methanol
reformer for fuel cell vehicles,” Journal of Power Sources, Vol. 86, pp.
223-227, 2000.
[21] Hohlein, B., Boe, M., Bogild-Hansen, J., Brockerhoff, P., Colsman, G. and Emonts, B., “Hydrogen from methanol for fuel cells in mobile
systems development of a compact reformer,” Journal of Power Sources,
Vol. 61, pp. 143-147, 1996.
[22] Emonts, B., Hansen, J.B., Jorgensen, S.L., Hohlein, B. and Peters, R.,“Compact methanol reformer test for fuel-cell-powered light-duty
vehicles,” Journal of Power Sources, Vol. 71, pp. 288-293, 1998.
[23] Wiese, W., Emonts, B. and Peters, R., “Methanol steam reforming in a fuel cell drive system,” Journal of Power Sources, Vol. 84, 1999, pp.
187-193.
[24] Han, J.S., Kim, I.S. and Choi, K.S., “Purifier-integrated methanol
reformer for fuel cell vehicles,” Journal of Power Sources, Vol. 86, 2000,
pp. 223-227.
[25]張木彬、李灝銘,“以低溫電漿去除揮發性有機物之研究”,中央大學環境工程研究所博士論文,民國89 年。
[26] 劉永銓、徐添財、韓坤佑,“新式微波電漿反應器之設計及其應用於揮發有機物處理效率之研究”,中興大學化學工程系碩士論文,民國90 年。
[27] 白曛綾、張宗良、王慶元,“觸媒結合脈衝放電系統處理甲苯氣體之研究”,交通大學環境工程所碩士論文,民國90 年。
[28] 張國慶、蕭威方,“以直流電漿火炬處理煙道中含鹵素有機物之廢氣”,屏東科技大學環境工程與科學系碩士論文,民國91 年。
[29] Braithwaite N. St. J., “Introduction to gas discharges,” Plasma Sources Sci, Techol., Vol, 9, 2000, pp. 517-527.
[30] Clark D.T., Dilks A. and Shuttleworth D., D. T. Clark and W.J. Feast
(eds.), John Wiley, New York, 1987, P. 185.
[31] 董家齊、陳寬任,奇妙的物質第四態-電漿,科學發展,2002 年6 月,第354 期。
[32] 赤崎正則,村岡克紀,渡邊征夫,姥元健治共著,賴耿陽編譯,電漿工學的基礎,復文書局。
[33] Skoog 原著,林敬二,林宗義審譯,儀器分析,第四版 亞美書版股份有限公司 pp.579-625.
[34] 行政院環保署網站http://www.epa.gov.tw/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔