跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/12 10:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏志坤
研究生(外文):Jhih-Kun Yan
論文名稱:偏壓輔助化學氣相沉積均勻鑽石-成核和成長之研究
論文名稱(外文):Bias-enhanced Chemical Vapor Deposition of Uniform Diamonds-The Study of Nucleation and Growth
指導教授:張立張立引用關係
指導教授(外文):Li Chang
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:95
語文別:中文
論文頁數:226
中文關鍵詞:鑽石化學氣相沉積成核成長磊晶上電極電子顯微鏡材料分析
外文關鍵詞:DiamondChemical vapor depositionNucleationGrowthEpitaxyAnodeElectron MicroscopyMaterial Analysis
相關次數:
  • 被引用被引用:5
  • 點閱點閱:446
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以偏壓輔助化學氣相沉積鑽石之均勻成核和成長的研究,主要分成三個部分來探討。其中第一部份,描述我們設計一個Mo質的上電極,去改善微波電漿和輝光放電(二次電漿)的分佈,進而能沉積分佈均勻的鑽石膜在Si(100)基材上。第二部分則是藉此上電極的輔助,來探討不同製程參數在偏壓階段時對鑽石成核的影響,結果可發現高方向性的單晶奈米級鑽石。第三部分,藉由改善偏壓時,鑽石會隨空間變化而不均勻沉積的問題。我們研究鑽石在初始成核階段時,形成進展的過程,進而能澄清鑽石在Si(100)的成核機制。
在第一部分中,利用微波電漿化學氣相沉積法(MPCVD),使用偏壓輔助成核的方法(BEN)來輔助鑽石成核,以氫氣和甲烷為氣體源,來合成鑽石在1 x 1 cm2 Si(100)基材上。藉由使用自行設計的圓頂狀 Mo質上電極,可改善鑽石沉積分佈的均勻性,包含鑽石的密度、尺寸和形貌等。分析技術方面,應用了掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)和Raman光譜儀等方式,結果發現,在偏壓期間,若是使用圓頂狀上電極,以及在成長階段時通入2%的甲烷,可以得到<100>織構的高品質鑽石薄膜,且其為一相當平整的表面。
第二部份的討論則著重於,在偏壓階段,我們藉由上電極輔助時,各種不同製程參數對於鑽石成核的影響。沉積的核種經由SEM的分析,可知所有不同條件試片,都可沉積高密度且均勻分佈的圓錐物。我們還了解到,這些圓錐物的密度與參數的相互關係:若初步碳氫加熱階段的時間越長,則密度越高;圓錐物密度還隨著在偏壓階段時的甲烷濃度、偏壓時間、電漿功率增加而增加,但會隨著偏壓增高而降低。TEM更進一步顯示出圓錐物的結構,乃是由Si cone、SiC和daimond,由下自上組合而成,且SiC和Si cone 一定有磊晶的關係。經由使用更短的偏壓時間來作成核研究,可發現大量具方向性的單晶奈米鑽石磊晶在SiC上。長時間的偏壓後,會發現到多晶鑽石的形成,推測可能是因為二次成核所造成的。
最後一部份探討的是,經由MPCVD並輔以直流偏壓時,鑽石在Si(100)上的成核機制。此處,我們比較不同偏壓時間下的結果(20s – 4 min),同時也發現到鑽石核種的形成過程。SEM的結果顯示出,在初期的偏壓階段中,有相當高密度的圓錐物形成。偏壓後期,則是有很多的樹狀物形成在基材上。TEM的結果更顯示出,無論是錐狀或是樹狀物,其結構都是最下面為Si cone晶體,SiC的磊晶則成長其上,並且形成一個V型火山口,diamond則成長其中。
最後對錐狀物結構的形成過程和表面型態之發展,也利用SEM和TEM來觀察研究。
The dissertation is divided into three main parts. The first part, we designed a Mo anode which improved the distribution of microwave plasma and dc glow discharge to deposit uniform diamond films on Si substrates. In the second part, we discuss the effect of the different parameters for the nucleation of diamond with this anode during bias stage. As a result, oriented diamond nuclei as single crystals can be found. In the last part, we investigated the evolution of diamond crystallites formed in the early bias stage. We have clarified the mechanism for the diamond nucleation on Si (100) without the effect of spatial variation of diamond during the bias stage.

In the first part of the dissertation, diamond films on 1 x 1 cm2 Si (100) substrates were synthesized by microwave plasma chemical vapor deposition (MPCVD) using a mixture of methane and hydrogen gases. The bias-enhanced nucleation method was used to avoid any mechanical pretreatments. Distribution of deposited diamond crystallites in terms of density, size, and morphology has been significantly improved over all the Si substrate surface area by using a novel designed Mo anode. Films were characterized from the center to the edges of substrates using scanning electron microscopy, transmission electron microscopy, and Raman analysis. The results also show that uniform diamond films can be obtained by a short bias nucleation period using a dome-shaped Mo anode. Using 2% CH4 in the growth stage, high-quality diamond films in the <100> texture can be obtained with relatively smooth surfaces.

In the second part of the dissertation, we show the effect of the different manufacturing conditions for the nucleation of diamond during bias stage using this dome-shaped Mo anode. The deposits were characterized by scanning electron microscopy (SEM), and transmission electron microscopy (TEM). SEM observations show that there is a high density of cone-like particles uniformly deposited on the surface of the substrate in all of the different deposition conditions. The density of cone-like particles was increased with time in the heating stage using hydro-carbon plasma and increased with methane concentration, bias time, and power in the bias stage. TEM reveals that each cone-like particle is actually composed of Si conic crystal covered with diamond. Between Si and diamond, a thin layer of cubic SiC is found in epitaxy with Si. Furthermore, the oriented diamond nuclei as single crystals with facets can form on self-formed Si cones through epitaxial SiC within a short bias period of 60 s. After a longer bias time, it has been observed that polycrystalline diamonds formed as a result of secondary nucleation.

In the final part of the dissertation, we studied a nucleation process of diamond on Si (100) substrates performed by bias-enhanced microwave plasma chemical vapor deposition (MPCVD). Deposition for different bias time (20 s– 4 min) has been demonstrated from CH4-H2 gas mixtures and a crystal phase formation process is found. SEM shows that there is a high density of cone-like particles in the very early stage and tree-like particles were uniformly deposited on the surface of the substrate in the later stage of bias application. TEM reveals that the cone-like and tree-like structures are actually composed of Si cone covered with epitaxial cubic SiC of a volcano shape which is topped with diamond.
The evolution of the morphology of the conic structure has been studied using SEM and TEM.
目 錄
頁次
中文摘要 ………………………………………………………… i
英文摘要 ………………………………………………………… iii
誌 謝 ………………………………………………………… vi
目 錄 …………………………………………………………viii
表 目 錄 …………………………………………………………xiii
圖 目 錄 ………………………………………………………… xiv

第一章 緒論…………….……………………….…………………1
1. 1 前言……….…………………………………………… …1
1. 2 鑽石的特性………….………………………………………3
1. 2. 1 鑽石的鍵結和結構.………………………………………3
1. 2. 2 鑽石的性質及應用潛力…………………….……………5
1. 3 在異質基材上成長鑽石之情形..…………………………12
1. 4 偏壓輔助成核法(BEN)的特性和存在問題………………16
1. 5 論文概要.…………………………………………………17
參考文獻 ……………………………….……………………….…18
第二章 文獻回顧……………………………….…………………22
2. 1 前言……….…………………………………………… 22
2. 2 碳膜的分類與碳的相變化….……………………………24
2. 2. 1 碳膜的分類….....………………………………………24
2. 2. 2 碳的相變化….……………………………………………25
2. 3 人工合成鑽石簡史.……………………………….………27
2. 3. 1 高溫高壓法….……………………………………………27
2. 3. 2 觸媒高溫高壓法…...……………………………………29
2. 3. 3 震波法………..…………………………………………30
2. 3. 4 化學氣相沉積法………..………………………………32
2. 3. 5 微波電漿化學氣相沉積技術..…………………………37
2. 4 CVD鑽石的成核與成長理論…….…………………………41
2. 4. 1 同質成核…………………………………………………42
2. 4. 2 異質成核…………………………………………………44
2. 4. 3 成長理論…………………………………………………45
2. 5 提高鑽石成核密度的方法..….…………………………50
2. 5. 1 刮痕法……………………………………………………50
2. 5. 2 種晶法……………………………………………………50
2. 5. 3 離子佈值法………………………………………………51
2. 5. 4 碳化法……………………………………………………51
2. 5. 5 偏壓輔助成核法…………………………………………52
2. 6 加熱階段時純氫或碳氫電漿對Si基材表面的影響………55
2. 6. 1 氫電漿的影響……………………………………………55
2. 6. 2 碳氫電漿的影響…………………………………………57
2. 7 負偏壓輔助鑽石成核在Si基材上機制之回顧……………59
2. 8 研究動機……..……………………….…………………64
參考文獻 ……………………………….……………………….…65
第三章 高品質且分佈均勻之鑽石的控制與沉積…………………74
3. 1 前言………………………..………………………………74
3. 2 實驗流程與方法…..…………….………………………76
3. 2. 1 試片之備製與前處理…...………………………………77
3. 2. 2 上電極的設計和改良……………………………………77
3. 2. 3 鑽石膜合成程序…………………………………………82
3. 2. 4 試片分析…………………………………………………84
3. 3 實驗結果與討論…………..………………………………85
3. 3. 1 短時間成長之分析結果(試片A)…………………………85
3. 3. 2 不同條件下長時間成長之比較(試片B、C、D和E)……87
3. 4 結論………………..…..…..…………………………102
參考文獻 ……………………………….…………………………103
第四章 製程條件對鑽石成核之影響……………………………106
4. 1 前言………………………..……………………………106
4. 2 實驗流程與方法…..…………….………………………108
4. 2. 1 試片的前處理和上電極之使用….……..……………108
4. 2. 2 鑽石成核之程序…………………………………………108
4. 2. 3 試片分析…………………………………………………110
4. 3 實驗結果與討論…………..……………………………113
4. 3. 1 加熱階段純氫和碳氫電漿對Si基材表面之影響………113
4. 3. 2 不同製程條件對鑽石密度的影響………………………119
4. 3. 3 圓錐物的拉曼分析………………………………………130
4. 3. 4 圓錐物之橫截面穿透式電子顯微鏡觀察………………131
4. 3. 5 電子能損譜及電子能量濾鏡的分析及觀察……………136
4. 4 結論………………..…..…..…………………………141
參考文獻 ……………………………….……………………….143
第五章 奈米尺度單晶鑽石的沉積與形成機制探討……………144
5. 1 前言………………………..……………………………144
5. 2 實驗流程與方法…..…………….……………………146
5. 2. 1 試片的前處理和上電極之使用….……..……………147
5. 2. 2 鑽石成核之程序…………………………………………147
5. 2. 3 試片分析…………………………………………………148
5. 3 實驗結果與討論…………..……………………………149
5. 3. 1 圓錐物的SEM分析………………………………………149
5. 3. 2 圓錐物的TEM分析………………………………………151
5. 3. 3 在頂端無diamond之圓錐物……………………………153
5. 3. 4 圓錐物上生成單晶diamond……………………………156
5. 3. 5 圓錐物上生成多晶diamond……………………………158
5. 4 結論………………………………………………………161
參考文獻 ……………………………….……………………….163
第六章 鑽石成核機制…………………………………….………166
6. 1 前言………………………..……………………………166
6. 2 實驗流程與方法…..…………….………………………168
6. 2. 1 試片的前處理和上電極之使用….……..……………169
6. 2. 2 SiO2圖案的製作過程….……..………………………169
6. 2. 3 鑽石成核之程序…………………………………………171
6. 2. 4 試片分析…………………………………………………171
6. 3 實驗結果…………………………………………………173
6. 3. 1 圓錐物尺寸對Si cone、SiC和diamond分佈之影響…173
6. 3. 2 Si cone的形成機制……………………………………176
6. 3. 3 鑽石核種整個形成過程…………………………………179
6. 4 討論…………..…………………………………………191
6. 4. 1 碳氫電漿對矽基材的加熱及清潔………..……………191
6. 4. 2 在Si基材生成表面具有{111}facet steps的Si cone192
6. 4. 3 在Si cone上長出在頂端具有一V型火山口的SiC島狀193
6. 4. 4 Diamond在SiC島狀物頂端的V型火山口槽裡面形成…194
6. 5 結論………………..…..…..…………………………198
參考文獻 ……………………………….……………………….200
第七章 總結與未來展望…………………………………….……202
7. 1 總結………………………..……………………………202
7. 2 未來展望…..…………….………………………………205
附錄一 實驗設備介紹….……..…………………………………207
附錄二 在Si(100)基材沉積ring狀圍繞的鑽石…………………217
附錄三 在patterned的Si(100)基材沉積鑽石…………………220
附錄四 不同偏壓時間對鑽石成長之影響………………………223


表目錄
頁次
表1-1 鑽石、矽、β-碳化矽和砷化鎵的物理性質之比較.……9
表1-2 鑽石運用與鑽石性質的關聯………………………………11
表1-3 較有機會沉積磊晶鑽石的基材材料和鑽石特性之比較…15
表2-1 不同CVD合成法的特性比較表……………………………36
表3-1 合成鑽石的實驗參數(Sample A)…………………………83
表3-2 成長階段(Growth)不同條件下鑽石沉積10小時…………84
表3-3 成長階段不同條件下之試片經不同分析之結果整理…101
表4-1 加熱階段不同氣氛和時間之實驗參數…………………111
表4-2 不同製程條件之成核實驗參數…………………………112
表5-1 沉積單晶奈米鑽石所選用的成核實驗參數……………148
表6-1 欲瞭解鑽石成核機制所設計之實驗參數………………172
表7-1 未來潛力與展望…………………………………………206


圖目錄 頁次
圖1-1 面心立方晶體鑽石結構….………………………………4
圖1-2 (a)立方晶鑽石原子結構和(b)六方晶鑽石原子結構……4
圖1-3 石墨的原子結構,每層是由六個碳原子的群組環所構成5
圖1-4 鑽石的運用…………………………………………………10
圖2-1 碳的溫度和壓力相圖………………………………………26
圖2-2 (a) Bridgman壓缸棒管式(piston-cylinder)。(b)無壓缸對頂式(Bridgman Anvils)的高壓機構圖……………………. 28
圖2-3 ASEA合成鑽石的機構圖……………………………………29
圖2-4 熔融的金屬觸媒可以把3R的菱形石墨彎摺成鑽石………30
圖2-5 震波合成的示意圖…………………………………………31
圖2-6 一般在低壓化學氣相沉積系統中主要反應的示意圖……33
圖2-7 利用熱裂解法來成長鑽石的裝置示意圖…………………33
圖2-8 NIRIM所發表的微波電漿輔助化學氣相沉積系統………35
圖2-9 ASTeX開發的不鏽鋼腔體的微波電漿輔助化學氣相沉積系統 35
圖2-10 在微波電漿系統中各個物種成分跟輸入碳莫耳含量的關係圖。(a)以CH4 為輸入碳源,(b)以C2H2 為碳源……………40
圖2-11 鑽石成核成長過程之示意圖……………………………41
圖2-12 均質成核理論中adamantane、tetracyclododecane和hexacyclopentadecane之碳氫化合物分子結構………………43
圖2-13 微波電漿系統所收集到的電漿氣氛中的鑽石核種………43
圖2-14 (a)進化選擇機制。(b) Yarbrough等人的實驗中可以觀察到與進化選擇機制相當吻合之結果,斷面為柱狀結構的鑽石膜…46
圖2-15 生長參數(α)與鑽石形貌的關係圖…………………… 47
圖2-16 鑽石薄膜的織構及形貌,會與甲烷濃度與基材溫度有關,而τ100參數則代表<100>方向傾斜偏離基材法線方向的角度…. 48
圖2-17 Jiang等人使用負偏壓在Si (100)基材上合成高方向性鑽石膜 53
圖2-18 在基材加偏壓提高鑽石成核密度之模型示意圖.……54
圖2-19 氫原子藉由遷移和打斷Si-Si鍵結而吸附在Si的表面上,形成silicon hydrides 的混合物和蝕刻產物之過程………………56
圖2-20 矽基材經由氫原子作用後,表面會生成的矽島狀物……57
圖2-21 AFM影像指出在碳氫電漿下,Si基材表面蝕刻情形會隨甲烷濃度的多寡而不同……………………………………………… 58
圖2-22 在Si基材加負偏壓時,輝光放電是隨時間和空間變化的,會隨著鑽石核種的形成,從試片外圍而向中心移動…………….60
圖2-23 在Si基材加負偏壓時,鑽石會在輝光放電區域之前端約 200μm處開始成核…………………………………………….. 60
圖2-24 在Si基材加負偏壓時,試片表面經偏壓(bias)處理後和經成長後表面形貌因位置不同產生之差異………………………… 61
圖3-1 合成鑽石膜之流程圖……………………………………76
圖3-2 上電極擺放位置示意圖.…………………………………78
圖3-3 不同上電極形狀在偏壓V = -100 V (基材),4% CH4條件下之光學照片…………………………………………………………79
圖3-4 使用傳統方法合成的鑽石膜(-200V偏壓19 min),顯示鑽石膜確實分佈不均勻,且從試片外觀可觀察到厚度條紋…………80
圖3-5 (a)為圓頂狀上電極和Mo holder的實體照片,圖(b)為圓頂狀上電極和Mo holder的尺寸……………………………………..81
圖3-6 (a)試片A的光學照片影像顯示鑽石分佈的一致性, (b)SEM影像可發現有不同鑽石多面體結晶, (c)橫截面TEM明場圖顯示鑽石成長在Si的hillock區域上和(d)以Si [011] 軸向的繞射圖………………………………………………………………… 86
圖3-7 (a)試片E的光學照片影像,顯示顏色的一致性,無厚度條紋。(b)從試片的外圍至內部不同位置的SEM影像,顯示鑽石密度、尺寸和形貌都很一致……………………………………… 88
圖3-8 從試片的外圍至內部不同位置的拉曼光譜分析…………89
圖3-9 鑽石膜經不同條件沉積10 小時之SEM影像………………91
圖3-10 鑽石膜經不同條件沉積10 小時之Raman光譜圖…………93
圖3-11 鑽石膜經不同條件沉積10 小時之SEM cross-section 影像 95
圖3-12 成長階段時在有無上電極條件下之光學照片…………96
圖3-13 鑽石膜經不同條件沉積10 小時之XRD繞射圖……………98
圖3-14 鑽石膜經不同條件沉積10 小時之SIMS 縱深分佈圖,顯示C, H, O, Si 和Mo元素之分佈………………………………… 100
圖4-1 不同製程條件對鑽石成核影響實驗之流程圖…………109
圖4-2 Si基材表面經純氫電漿加熱後之AFM圖……… 114
圖4-3 Si基材表面經2%甲烷濃度之碳氫電漿加熱後之AFM圖…116
圖4-4 Si基材表面經2%甲烷濃度之碳氫電漿加熱後之HRTEM圖117
圖4-5 Si基材表面經4%甲烷濃度之碳氫電漿加熱10 min後,會有鑽石自然成長(natural growth)現象產生……………………… 118
圖4-6 碳氫電漿加熱時間的不同對鑽石成核之影響…………120
圖4-7 試片經加熱、鑽石成核和成長過程後表面之情形。(a)加熱階段只用氫電漿加熱,(b)加熱階段使用碳氫電漿加熱…………121
圖4-8 不同甲烷濃度對鑽石成核之影響………………………123
圖4-9 不同偏壓時間對鑽石成核之影響………………………125
圖4-10 不同功率大小對鑽石成核之影響………………………127
圖4-11 不同負偏壓大小對鑽石成核之影響……………………129
圖4-12 (a), (b)和(c)分別是甲烷濃度3%, 4%和5%試片的拉曼光譜圖………………………………………………………………..131
圖4-13 (a)、(b)和(c)分別是甲烷濃度3%, 4%和5%時的橫截面TEM明場圖,附屬在旁邊的圖是以Si [011]為軸向的繞射圖……133
圖4-14 (a)甲烷濃度3%試片的HRTEM,和圖4-12(a)是同一個 TEM 樣品,但為不同位置的影像,(b)為(a)的FFT圖,(c)為(a)中SiC和Si cone間的放大圖……………………………………. 135
圖4-15 (a)圓錐物的zero loss圖,和4-14 (a)的HRTEM圖是同樣位置, (b)從圓錐物上的diamond取得的EELS光譜圖,顯示碳K edge diamond特性峰的圖形(c) Carbon map, (d) Silicon map……………………………………………………………..135
圖4-16 (a)圓錐物的unfiltered image, (b)圓錐物的elastic image, (c)圓錐物的thickness mapping image, (d), (e), (f) 和(g)分別是圖(c)中線段ab, cd, ef 和gh的厚度分佈曲線…………………… 140
圖5-1 單晶奈米鑽石合成過程之流程圖………………………146
圖5-2 (a)試片經5% CH4濃度和偏壓1 min的SEM影像,(b)是(a)的放大圖………………………………………………………..150
圖5-3 (a)圓錐物沉積在Si(100)基材上的HRTEM橫截面明場圖,(b)和(c)是分別為圖5-3(a)Region 1和2的放大圖,(d)和(e)分別是(b)和(c) 延著Si [011] 軸向的選區繞射圖(SAD),顯示典型的diamond {111}和cubic SiC {111}………………………..152
圖5-4 無鑽石之圓錐物的HRTEM相關分析………………………155
圖5-5 圓錐物上生成單晶鑽石的HRTEM影像相關分析…………157
圖5-6 圓錐物上生成多晶鑽石的HRTEM相關分析………………159
圖5-7 顯示Volmer-Weber growth of diamond films on β-SiC(001)。(a)鑽石成核在β-SiC protrusions間的溝槽裡(dark area),(b)鑽石沿著溝槽成長………………...........................................160
圖6-1 欲瞭解鑽石成核機制所設計之實驗流程圖……………168
圖6-2 SiO2圖案製作過程………………………………………170
圖6-3 使用EELS mapping來分析圓錐物尺寸對Si cone、SiC和diamond分佈之影響。(a)較小尺寸圓錐物的zero loss image, (b)較大尺寸圓錐物的zero loss image, (c) carbon map of (a), (d) carbon map of (b), (e) silicon map of (a), and (f) silicon map of (b)…………………………………………………………….175
圖6-4 (a)和(b)分別為原始patterned 試片有tilt角度和cross-section的SEM影像,(c)為patterned試片經碳氫電漿加熱後有tilt角度的SEM影像,(d)為(c)中Region 1的放大圖,(e)試片經過碳氫加熱階段和負偏壓2 min後的SEM影像和(f)為(e)中Region 2的放大圖…………………………………………….. 178
圖6-5 (a)為試片經偏壓20 s後界面區域的cross-section bright-field TEM 影像,附在圖6-5 (a)�堛漪O電子束對圖6-5 (a)沿著Si[011] zone-axis的電子繞射圖,(b)為突出物和Si基材界面區域的HRTEM影像,附在圖6-5 (a)�堛慚FT圖是擷取圖6-5 (a)�堛摧egion 3而得……………………………………… 180
圖6-6 (a)、(b)、(c)和(d)分別為試片經偏壓1、2、3和4 min後的tilt SEM影像……………………………………………………182
圖6-7 (a)、(b)、(c)和(d)分別為試片經偏壓1、2、3和4 min後的cross-section的SEM影像……………………………………..183
圖6-8 (a)、(b)、(c)和(d)分別為試片經偏壓1、2、3和4 min後的Raman光譜圖…………………………………………………..185
圖6-9 (a)為cross-section 的bright-field TEM影像,為試片經偏壓4 min後的界面情形,(b)以Si [011] 軸向的繞射圖,(c)為(a)的放大圖和(d)為(c)的dark-field影像…………………………189
圖6-10 使用EELS mapping來分析樹狀物的Si cone、SiC 和diamond和分佈之情形…………………………………………………190
圖6-11 使用3D圖來輔助說明在BEN時鑽石的成核機制。(a)原Si基材,(b)基材經碳氫電漿加熱後,(c)-(f)基材經加熱完後,加BEN的過程中,生成物和鑽石的變化情形……………….. 197
Chaper 1
1. C. S. Yan, Y, Chen, S. S. Ho, H. K. Mao, and R. Hemley, “Large single crystal CVD diamonds at rapid growth rates”, The 10th International Conference on New Diamond Science and Technology. Tsukuba, Japan, on May 12
2. C. S. Yan, S. S. Ho, H. Y. Shu, H. K. Mao, and R. Hemley, “Very Large Diamonds Produced Very Fast”, The 2005 Annual Meeting (Cincinnati, OH).
3. S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Appl. Phys. Lett. 58, 1036 (1991).
4. S. T. Lee, Z. Lin, and X. Jiang, “CVD diamond films: nucleation and growth”, Mater. Sci. Eng. R. 25, 123 (1999).
5. H. Liu, and D. S. Dandy, “Diamond Chemical Vapor Deposition: Nucleation and Early Growth Stages”, Noyes Publications, New Jersey, U.S.A., 1995.
6. H. O. Pierson, “Handbook of Carbon, Graphite, Diamond and Fullerenes”, Noyes Publications, Park Ridge, New Jersey, 1993.
7. 陳培麗,「鑽石及類鑽薄膜簡介」,科儀新知,第2期,82-91頁,民國80年10月。
8. Emerging Technologies no.25, “Diamond Films Evaluating the Technology and Opportunities”, published by Technical Insights, Inc., Englewood/Fort Lee, NJ.
9. Michael Shur, “Physics of Semiconductor Devices”, Prentice-Hall, 1990.
10. J. Beason and R. B. Patterson, III, Proceedings of the 1981 Houston Conference on High-Temperature Electronics And Instrumentation (IEEE), New York, p.101, 1981
11. M. W. Geis, D. D. Rathman, D. J. Eerlish, R. A. Murphy, and W. T. Lindly, IEEE Electron Device Lett. EDL8, 341 (1987).
12. G. Sh. Gildenblat, S. A. Grot, C. W. Hatfield, A. R. Badzian, and T. Badzian, IEEE Electron Device Lett. EDL11, 371 (1990).
13. 宋健民,「鑽石合成」,民國89年7月。
14. J. C. Arnault, “Highly oriented diamond films on heterosubstrates: Current state of the art and remaining challenges”, Surface Review and Letters. 10, 127 (2003).
15. A. Argoitia, J. C. Angus, L. Wang, X. I. Ning, and P. Pirouz, “Diamond grown on single-crystal beryllium oxide”, J. Appl. Phys. 73, 4305 (1993).
16. M. Yoshimoto, K. Yoshida, H. Maruta, Y. Hishitani, H. Koinuma, S. Nishio, M. Kakihana, and T. Tachibana, “Epitaxial diamond growth on sapphire in an oxidizing environment”, Nature. 399, 340 (1999).
17. D. R. Gilbert, and R. K. Singh, Proc. Mater. Res. Soc. 423, 371 (1996).
18. M. Oba, and T. Sugino, “Oriented growth of diamond on (0001) surface of hexagonal GaN”, Diam. Relat. Mater. 10, 1343 (2001).
19. S. Koizumi, T. Murakami, T. Inuzuka, and K. Suzuki, “Epitaxial growth of diamond thin films on cubic boron nitride {111} surfaces by dc plasma chemical vapor deposition”, Appl. Phys. Lett. 57, 563 (1990).
20. B. R. Stoner, G. H. Ma, S. D. Wolter, W. Zhu, Y. C. Wang, F. Davis, and J. T. Glass, “Epitaxial nucleation of diamond on β – SiC via bias-enhanced microwave plasma chemical vapor deposition”, Diamond Relat Mater. 2, 142 (1993).
21. X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Füsser, “Epitaxial diamond thin films on (001) silicon substrates”, Appl. Phys. Lett. 62, 3438 (1993).
22. B. A. Fox, B. R. Stoner, D. M. Malta, and P. J. Ellis, “Epitaxial nucleation, growth and characterization of highly oriented, (100)-textured diamond films on silicon”, Diamond Relat Mater. 3, 382 (1994).
23. M. Schreck, F. Hörmann, H. Roll, T. Bauer, and B. Stritzker, “Heteroepitaxial Diamond Films on Silicon Substrates and on Iridium Layers: Analogies and Differences in Nucleation and Growth”, New Diamond and Frontier Carbon Technology. 11, 189 (2001).
24. T. Tachibana, Y. Yokota, K. Hayashi, and K. Kobashi, “Growth of {111}-oriented diamond on Pt/Ir/Pt substrate deposited on sapphire”, Diam. Relat. Mater. 10, 1633 (2001).
25. I.-H. Choi, S. Barrat and E. Bauer-Grosse, “Quantitative characterization of the true epitaxial ration in the first stage of the MPCVD diamond synthesis”, Diamond Relat. Mater. 12, 361 (2003).
26. S. Barrat, S. Saada, I. Dieguez, and E. Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”, J. Appl. Phys. 84, 1870 (1998).
27. M. Schreck, T. Baur, and B. Stritzker, “Optical characterization of the cathode plasma sheath during the biasing step for diamond nucleation on silicon”, Diamond Relat. Mater. 4, 553 (1995).
28. W. Kulisch, L. Achermann, and B. Sobisch, “On the Mechanisms of Bias Enhanced Nucleation of Diamond”, phys. status solid. A154, 155 (1996).
29. R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Diamond growth during bias pre-treatment in the microwave CVD of diamond”, Diamond Relat. Mater. 5, 321 (1996).
30. C. J. Chen, L. Chang, T. S. Lin, and F. R. Chen, “Microstructural evolution of diamond/Si (100) interfaces with pretreatments in chemical vapor deposition”, J. Mater. Res. 10, 3041 (1995).


Chaper 2

1. A. R. Badzian, P. K. Bachmann, T. Hartnett, T. Badzian, and R. Messier, “Diamond Thin Films Prepared by Plasma Chemical Vapor Deposition Processes”, Materials Research Society Meeting. Vol. XV, 63 (1987).
2. D. C. Ingram, “Diamondlike Carbon (DLC): Its Fabrication, Analysis and Modification by Ion Beams”, Materials Science Forum. Vol. 52 and 53, 475 (1989).
3. S. Aisenberg, and F. M. Kimock, “Ion Beam and Ion-Assisted Deposition of Diamond-Like Carbon Films”, Materials Science Forum. Vol. 52 and 53, 1 (1989).
4. F. Olcaytug, and Coworkers, “Amorphous Carbon Films for Sensor Applications”, Materials Science Forum. Vol. 52 and 53, 671 (1989).
5. H. Liu, and D. S. Dandy, “Diamond Chemical Vapor Deposition: Nucleation and Early Growth Stages”, Noyes Publications, New Jersey, U.S.A., 1995.
6. 宋健民,「鑽石合成」。
7. H. T. Hall, “Ultra-High-Pressure, High-Temperature Apparatus: the Belt”, Rev. Sci. Instr. 31, 125 (1960).
8. P. S. DeCarli, and J. C. Jamieson, “Formation of Diamond by explosive shock”, Science. 133, 1821 (1961).
9. Robert F. Davis, “Diamond Films and Coatings Development, Properties, and Applications”, Noyes Publications, Park Ridge, New Jersey, 1992.
10. W. G. Eversole, “Synthesis of diamond”, U. S. Patent, 3,030,188(April 17, 1962).
11. K. E. Spear, and J. P. Dismukes, “Synthetic Diamond Emerging CVD Science and Technology”, John Wiley&Sons, Inc., New York, 390-393 3-90. (1994).
12. S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, “Vapor Deposition of diamond particles from Methane”, Jpn. J. Appl. Phys. 21, L183 (1982).
13. W. J. Zhang, and X. Jiang, “The contribution of H+ ion etching during the initial deposition stage to the orientation grade of diamond films”, Thin Solid Films. 348, 84 (1999).
14. M. C. McMaster, W. L. Hsu, M. E. Coltrin, D. S. Dandy, and C. Fox, “Dependence of the gas composition in a microwave plasma-assisted diamond chemical vapor deposition reactor on the inlet carbon source: CH4 versus C2H2”, Diamond Relat. Mater. 4, 1000 (1995).
15. W. L. Hsu, “Gas-phase kinetics during microwave plasma-assisted diamond deposition: Is the hydrocarbon product distribution dictated by neutral-neutral interactions”, J. Appl. Phys. 72, 3102 (1992).
16. B. V. Derjaguin, and D. V. Fedoseev, “The synthesis of diamond at low pressure”, Scientific American. 233, 102 (1975).
17. S. Matsumoto, and Y. Matsui, “Electron microscopic observation of diamond particle grown from the vapor phase”, J. Mater. Sci. 18, 1785 (1983).
18. M. Frenklach, R. Kematick, D. Huang, W. Howard, K. E. Spear, A. W. Phelps, and R. Koba, “Homogeneous nucleation of diamond powder in the gas phase”, J. Appl. Phys. 66, 395 (1989).
19. T. Inoure, H. Tachibana, K. Kumagi, K. Miyata, K. Nishimura, H. Kobashi, and A. Nakaue, “Selected-area deposition of diamond films”, J. Appl. Phys. 67, 7329 (1990).
20. K. Hirabayashi, Y. Taniguchi, O. Takamatsa, T. Ikeda, K. Ikoma, and N. Iwasaki-Kurihara, “Selective deposition of diamond crystals by chemical vapor deposition using a tungsten-filament method”, Appl. Phys. Lett. 53, 1815 (1988).
21. W. A. Yarbrough, and Russell Messier, “Current issues and problems in the chemical vapor deposition of diamond”, Science. 247, 688 (1990).
22. W. A. Yarbrough, “Current research problems and opportunities in the vapor phase synthesis of diamond and cubic boron nitride”, J. Vac. Sci. Technol. A. 39, 1145 (1991).
23. J. F. Parins, “Non-CVD method of diamond growth at low pressure”, Diamond Relat. Mater. 2, 646 (1993).
24. A. Badrezj, and T. Badrezj, “Diamond homoepitaxy by chemical vapor deposition”, Diamond Relat. Mater. 2, 147 (1993).
25. J. P. Vitton, J. J. Garenne, and S. Truchet, “High quality homoepitaxial growth of diamond films”, Diamond Relat. Mater. 2, 713 (1993).
26. M. I. Landstrass, M. A. Plano, M. A. Moreno, S. McWilliams, L. S. Pan, D. R. Kania, and S. Han, “Device properties of homoepitaxially grown diamond”, Diamond Relat. Mater. 2, 1033 (1993).
27. S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Appl. Phys. Lett. 58, 1036 (1991).
28. A. Van Der Drift, “Evolutionary selection, a principle governing growth orientation in vapor-deposited layers”, Philips Research Reports. 22, 267 (1967).
29. C. Wild, N. Herres, and P. Koidl, “Texture formation in polycrystalline diamond films”, J. Appl. Phys. 68, 973 (1990).
30. M. Moore, “Diamond morphology”, Ind. Dia. Rev. 2, 67 (1985).
31. C. Wild, R. Kohl, N. Herres, W. Müller-Sebert, and P. Koidl, “Oriented CVD diamond films: twin formation, structure and morphology”, Diamond Relat Mater. 3, 373 (1994).
32. B. V. Spitzyn, and B. V. Derjaguin, “Problems of Physics and Technology of Wide-Gap Semiconductors”, Akad. Nauk SSSR, Leningrad., 22 (1979).
33. B. V. Spitzyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces”, J. Crystal Growth. 52, 219 (1981).
34. S. Koizumi, T. Murakami, T. Inuzuka and, K. Suzuki, “Epitaxial growth of diamond thin films on cubic boron nitride {111} surfaces by dc plasma chemical vapor deposition”, Appl. Phys. Lett. 57, 563 (1990).
35. B. R. Stoner, G. H. Ma, S. D. Wolter, W. Zhu, Y. C. Wang, F. Davis, and J. T. Glass, “Epitaxial nucleation of diamond on β – SiC via bias-enhanced microwave plasma chemical vapor deposition”, Diamond Relat Mater. 2, 142 (1993).
36. X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Füsser, “Epitaxial diamond thin films on (001) silicon substrates”, Appl. Phys. Lett. 62, 3438 (1993).
37. B. A. Fox, B. R. Stoner, D. M. Malta and P. J. Ellis, “Epitaxial nucleation, growth and characterization of highly oriented, (100)-textured diamond films on silicon”, Diamond Relat Mater. 3, 382 (1994).
38. K. Ohtsuka, K. Suzuki, A. Sawabe, and T. Inuzuka, “Epitaxial growth of diamond on Iridium”, Jpn. J. Appl. Phys. 35, L1072 (1996).
39. K. Ohtsuka, H. Fukuda, K. Suzuki, and A. Sawabe, “Fabrication of epitaxial diamond thin film on Iridium”, Jpn. J. Appl. Phys. 36, L1214 (1997).
40. M. Schreck, H. Roll and B. Stritzker, “Diamond/Ir/SrTiO3 : A material combination for improved heteroepitaxial diamond films”, Appl. Phys. Lett. 74, 650 (1999).
41. W. J. Zhang, X. S. Sun, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Diamond nucleation enhancement by direct low-energy ion-beam deposition”, Phys. Rev. B. 61, 5579 (2000).
42. M. Y. Liao, X. M. Meng, X. T. Zhou, J. Q. Hu, and Z. G. Wang, “Nano diamond formation by hot-filament chemical vapor deposition on carbon ions bombarded Si”, J. Cryst. Growth. 236, 85 (2002).
43. B. R. Stoner, G. H. Ma, S. D. Wolter, and J. T. Glass, “Characterization of bias-enhanced nucleation of diamond on silicon by in vacuo surface analysis and transmission electron microscopy”, Phys. Rev. B. 45, 11067 (1992).
44. C. L. Jia, K. Urban and X. Jiang, “Heteroepitaxial diamond films on silicon (100): Interface structure and crystallographic relations between film and substrate”, Phys. Rev. B. 52, 5164 (1995).
45. 陳志堅,「高分辨及能量過濾電鏡研究磊晶鑽石膜成長機制」,國立清華大學工程與系統科學系,碩士論文,民國84年。
46. M. Katoh, M. Aoki and H. Kawarada, “Plasma-enhanced diamond nucleation on Si”, Jpn. J. Appl. Phys. 33, L194 (1996).
47. Y. Hayashi, W. Drawl, and R. Messier, “Temperature dependence of nucleation density of chemical vapor deposition diamond”, Jpn. J. Appl. Phys. 31, L193 (1992).
48. J. Abrefah, and D. R. Olander, “Reaction of atomic hydrogen with crystalline silicon”, Surf. Sci. 209, 291 (1989).
49. S. J. Pearton, J. W. Corbett, and T. S. Shi, “Hydrogen in Crystalline Semiconductors”, Appl. Phys. A43, 153 (1987).
50. S. M. Gates, R. R. Kunz, and C. M. Greenlief, “Silicon hydride etch products from the reaction of atomic hydrogen with Si(100) ”, Surf. Sci. 207, 364 (1989).
51. J. C. Arnault, S. Hubert, and F. Le Normand, “Silicon Etching during the HFCVD Diamond Growth”, J. Phys. Chem. B 102, 4856 (1998).
52. D. Wittorf, W. Jäger, C. Dieker, A. Flöter, and H. Güttler, “Electron microscopy of interfaces in chemical vapour deposition diamond films on silicon”, Diamond Relat. Mater. 9, 1696 (2000).
53. I.-H. Choi, S. Barrat and E. Bauer-Grosse, “Quantitative characterization of the true epitaxial ration in the first stage of the MPCVD diamond synthesis”, Diamond Relat. Mater. 12, 361 (2003).
54. S. Barrat, S. Saada, I. Dieguez, and E. Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”, J. Appl. Phys. 84, 1870 (1998).
55. M. Schreck, T. Baur, and B. Stritzker, “Optical characterization of the cathode plasma sheath during the biasing step for diamond nucleation on silicon”, Diamond Relat. Mater. 4, 553 (1995).
56. W. Kulisch, L. Achermann, and B. Sobisch, “On the Mechanisms of Bias Enhanced Nucleation of Diamond”, phys. status solid. A154, 155 (1996).
57. R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Diamond growth during bias pre-treatment in the microwave CVD of diamond”, Diamond Relat. Mater. 5, 321 (1996).
58. R. Stöckel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions”, J. Appl. Phys. 83, 531 (1998).
59. S. Yugo, N. Nakamura, T. Kimura, “Analysis of heteroepitaxial mechanism of diamond grown by chemical vapor deposition”, Diamond Relat. Mater. 7, 1017 (1998).
60. S. P. McGinnis, M. A. Kelly, and S. B. Hagström, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond”, Appl. Phys. Lett. 66, 3117 (1995).
61. J. Roberson, J. Gerber, S. Sattel, M. Weiler, K. Lung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si”, Appl. Phys. Lett. 66, 3287 (1995).
62. N. Ishigaki, S. Yugo, “Mechanism of diamond epitaxial on silicon”, Diamond Relat. Mater. 9, 1646 (2000).
63. C. J. Chen, L. Chang, T. S. Lin, and F. R. Chen, “Microstructural evolution of diamond/Si (100) interfaces with pretreatments in chemical vapor deposition”, J. Mater. Res. 10, 3041 (1995).
64. J. C. Arnault, “Highly oriented diamond films on heterosubstrates: Current state of the art and remaining challenges”, Surface Review and Letters. 10, 127 (2003).
65. B. B. Wang, W. L. Wang, L. Liao, and J. L. Xiao, “Experimental and theoretical studies of diamond nucleation on silicon by biased hot filament chemical vapor deposition”, Phys. Rev. B. 63, 085412 (2001).
66. W. J. Zhang, X. S. Sun, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Diamond nucleation enhancement by direct low-energy ion-beam deposition”, Phys. Rev. B. 61, 5579 (2000).
67. M. Stammler, R. Stöckel, L. Ley, M. Albrecht, and H. P. Strunk, “Diamond nucleation on silicon during bias treatment in chemical vapour deposition as analysed by electron microscopy”, Diam. Relat. Mater. 6, 747 (1997).
68. P. A. Dennig, and D. A. Stevenson, “Influence of substrate topography on the nucleation of diamond thin films”, Appl. Phys. Lett. 59, 1562 (1991).

Chaper 3
1. W. A. Yarbrough, and R. Messier, “Current Issues and Problems in the Chemical Vapor Deposition of Diamond”, Science. 247, 688 (1990).
2. J. C. Angus, and C. C. Hayman, “Low-Pressure, Metastable Growth of Diamond and "Diamondlike" Phases”, Science. 241, 913 (1988).
3. S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Appl. Phys. Lett. 58, 1036 (1991).
4. X. Jiang, and C. P. Klages, “Heteroepitaxial diamond growth on (100) silicon”, Diamond Relat. Mater. 2, 1112 (1993).
5. Y. K. Kim, K. Y. Lee, and J. Y. Lee, “Deposition of heteroepitaxial diamond film on (100) silicon in the dense plasma”, Appl. Phys. Lett. 68, 756 (1996).
6. Yoon-Kee Kim, Young-Soo Han, Jai-Young Lee, “The effects of a negative bias on the nucleation of oriented diamond on Si”, Diamond Relat. Mater. 7, 96 (1998).
7. I.-H. Choi, S. Barrat and E. Bauer-Grosse, “Quantitative characterization of the true epitaxial ration in the first stage of the MPCVD diamond synthesis”, Diamond Relat. Mater. 12, 361 (2003).
8. S. Barrat, S. Saada, I. Dieguez, and E. Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”, J. Appl. Phys. 84, 1870 (1998).
9. M. Schreck, T. Baur, and B. Stritzker, “Optical characterization of the cathode plasma sheath during the biasing step for diamond nucleation on silicon”, Diamond Relat. Mater. 4, 553 (1995).
10. W. Kulisch, L. Achermann, and B. Sobisch, “On the Mechanisms of Bias Enhanced Nucleation of Diamond”, phys. status solid. A154, 155 (1996).
11. R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Diamond growth during bias pre-treatment in the microwave CVD of diamond”, Diamond Relat. Mater. 5, 321 (1996).
12. S. Barrat, S. Saada, J. M. Thiebaut, and E. Bauer-Grosse, “Synthesis of highly oriented CVD diamond films by ultra short bias enhanced nucleation step”, Diamond Relat. Mater. 10, 1637 (2001).
13. 何克彬,「交流偏壓對鑽石成核影響之研究」,國立交通大學材料科學與工程學系,碩士論文,民國94年。
14. C. Wild, R. Kohl, N. Herres, W. Müller-Sebert, and P. Koidl, “Oriented CVD diamond films: twin formation, structure and morphology”, Diamond Relat Mater. 3, 373 (1994).
15. A. C. Ferrari, and J. Robertson, “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond”, Phys. Rev. B. 63, 121405 (2001).
16. F. Piazza, A. Golanski, S. Schulze, and G. Relihan, “Transpolyacetylene chains in hydrogenated amorphous carbon films free of nanocrystalline diamond”, Appl. Phys. Lett. 82, 358 (2003).
17. T. Lopez-Rios, E. Sandre, S. Leclercq, and E. Sauvin, “Polyacetylene in Diamond Films Evidenced by Surface Enhanced Raman Scattering”, Phys. Rev. Lett. 76, 4935 (1996).

Chaper 4

1. H. Liu, and D. S. Dandy, “Diamond Chemical Vapor Deposition: Nucleation and Early Growth Stages”, Noyes Publications, New Jersey, U.S.A., 1995.
2. Y. Ma, T. Tsurumi, N. Shinoda, and O. Fukunaga, “Effect of bias enhanced nucleation on the nucleation density of diamond in microwave plasma CVD”, Diamond Relat. Mater. 4, 1325 (1995).
3. V. Mennella, G. Monaco, L. Colangeli, and E. Bussoletti, “Raman spectra of carbon-based materials excited at 1064 nm”, Carbon. 33, 115 (1995).
4. A. C. Ferrari, and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Phys. Rev. B. 61, 14095 (2000).
5. S. T. Lee, H. Y. Peng, X. T. Zhou, N. Wang, C. S. Lee, I. Bello, and Y. Lifshitz, “A Nucleation Site and Mechanism Leading to Epitaxial Growth of Diamond Films”, Science. 287, 104 (2000).
6. D. B. Williams, and C. B. Carter, “Transmission Electron Microscopy a Textbook for Materials Science”, Plenum Press, New York, 1996.

Chaper 5

1. L. E. Brus, “Luminescence of Silicon Materials: Chains, Sheets, Nanocrystals, Nanowires, Microcrystals, and Porous Silicon”, J. Phys. Chem. 98, 3575 (1994).
2. J. Rupp, and R. Birringer, “Enhanced specific-heat-capacity (cp) measurements (150–300 K) of nanometer-sized crystalline materials”, Phys. Rev. B. 36, 7888 (1987).
3. H. Gleiter, “Nanocrystalline materials”, Prog. Mater. Sci. 33, 223 (1989).
4. D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, and Pan X, “Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions”, Appl. Phys. Lett. 64, 1502 (1994).
5. D. M. Gruen, S. Liu, A. R. Krauss, and X. Pan, “Buckyball microwave plasmas: Fragmentation and diamond-film growth”, J. Appl. Phys. 75, 1758 (1994).
6. S. G. Wang, Q. Zhang, S. F. Yoon, J. Ahn, Q. Wang, D. J. Yang, Q. Zhou, and Q. F. Huang, “Preparation and electron field emission properties of nano-diamond films”, Mater. Lett. 56, 948 (2002).
7. X. Jiang, and C. L. Jia, “Structure and defects of vapor-phase-grown diamond nanocrystals”, Appl. Phys. Lett. 80, 2269 (2002).
8. M. Q. Ding, W. B. Choi, A. F. Myers, A. K. Sharma, J. Narayan, J. J. Cuomo, and J. J. Hren, “Field emission enhancement from Mo tip emitters coated with N containing amorphous diamond films”, Surf. Coat. Technol. 94, 672 (1997).
9. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable Solid-State Source of Single Photons ”, Phys. Rev. Lett. 85, 290 (2000).
10. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. P. Poizat, and P. Grangier, “Single Photon Quantum Cryptography”, Phys. Rev. Lett. 89, 187901 (2002).
11. R. Brouri, A. Beveratos, J. P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond”, Opt. Lett. 25, 1294 (2000).
12. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of Coherent Oscillation of a Single Nuclear Spin and Realization of a Two-Qubit Conditional Quantum Gate”, Phys. Rev. Lett. 93, 130501 (2004).
13. X. T. Zhou, Q. Li, F. Y. Meng, I. Bello, C. S. Lee, S. T. Lee, and Y. Liftshitz, “Manipulation of the equilibrium between diamond growth and renucleation to form a nanodiamond/amorphous carbon composite”, Appl. Phys. Lett. 80, 3307 (2002).
14. D. Shechtman, A. Feldman, M. D. Vaudin, and J. H. Hutchison, “Moire fringe images of twin boundaries in chemical vapor deposited diamond”, Appl. Phys. Lett. 62, 487 (1993).
15. D. Dorignac, V. Serin, S. Delclos, F. Phillipp, D. Rats, and L. Vandenbulcke, “HREM and EXELFS investigation of local structure in thin CVD diamond films”, Diamond Relat. Mater. 6, 758 (1997).
16. S. T. Lee, H. Y. Peng, X. T. Zhou, N. Wang, C. S. Lee, I. Bello, and Y. Lifshitz, “A Nucleation Site and Mechanism Leading to Epitaxial Growth of Diamond Films”, Science. 287, 104 (2000).
17. Kawarada et al, “Initial growth of Heteroepitaxial diamond on Si(001) substrates via ”, Springer-Verlag Berlin Heidelberg New York, 1998.


Chaper 6
1. M. Schreck, F. Hörmann, H. Roll, T. Bauer, and B. Stritzker, “Heteroepitaxial Diamond Films on Silicon Substrates and on Iridium Layers: Analogies and Differences in Nucleation and Growth”, New Diamond and Frontier Carbon Technology. 11, 189 (2001).
2. K. H. Thürer, M. Schreck, and B. Stritker, “Limiting processes for diamond epitaxial alignment on silicon”, Phys. Rev. B. 57, 15454 (1998).
3. R. J. Nemanich, and S. A. Solin, “First- and second- order Raman scattering from finite-size crystals of graphite”, Phys. Rev. B. 20, 392 (1979).
4. V. Mennella, G. Monaco, L. Colangeli, and E. Bussoletti, “Raman spectra of carbon-based materials excited at 1064 nm”, Carbon. 33, 115 (1995).
5. A. C. Ferrari, and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Phys. Rev. B. 61, 14095 (2000).
6. W. A. Yarbrough and R. Messier, “Current issues and problems in the chemical vapor deposition of diamond”, Science. 247, 688 (1990).
7. R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, “Raman scattering characterization of carbon bonding in diamond and diamondlike thin films”, J. Vac. Sci. Technol. A 6, 1783 (1988).
8. R. E. Shroder, R. J. Nemanich, and J. T. Glass, “Analysis of the composite structures in diamond thin films by Raman spectroscopy”, Phys. Rev. B. 41, 3738 (1990).
9. A. C. Ferrari, and J. Robertson, “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond”, Phys. Rev. B. 63, 121405 (2001).
10. R. P. Vidano, D. B. Fishbach, L. J. Willis, and T. M. Loehr, “Observation of Raman band shifting with excitation wavelength for carbons and graphites”, Solid State Comm. 39, 341 (1981).
11. L. Chang, F. R. Chen, C. J. Chen, and T. S. Lin, “HRTEM and energy filtering TEM study of interfacial reaction between diamond film and silicon”, Diamond Relat. Mater. 5, 1282 (1996).
12. S. Yugo, K. Semoto, K. Hoshina, T. Kirnura, and H. Nakai, “A modelling of diamond nucleation”, Diamond Relat. Mater. 4, 903 (1995).
13. D. Wittorf, W. Jäger, C. Dieker, A. Flöter, and H. Güttler, “Electron microscopy of interfaces in chemical vapour deposition diamond films on silicon”, Diamond Relat. Mater. 9, 1696 (2000).
14. M. H. Hon, R. F. Davis, and D. E. Newbury, “Self-diffusion of 30Si in polycrystallineβ-SiC”, J. Mater. Sci. 15, 2073 (1980).
15. S. Yugo, T. Kimura, and T. Kanai, “Nucleation mechanisms of diamond in plasma chemical vapor deposition”, Diamond Relat. Mater. 2, 328 (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top