跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭琬琳
研究生(外文):Wan-Lin Kuo
論文名稱:氧化鋁披覆一維氧化鋅奈米複合材料之製備與光學性質研究
論文名稱(外文):Synthesis and optical properties of Al2O3 coated 1-D ZnO nanomaterials
指導教授:陳三元陳三元引用關係
指導教授(外文):San-Yuan Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:91
中文關鍵詞:氧化鋅氧化鋁披覆發光
外文關鍵詞:ZnOaluminacoatedphotoluminescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以低溫水溶液法合成氧化鋁披覆之一維氧化鋅奈米材料,經由熱處理溫度和氣氛的調控,可得到不同晶相之氧化鋁披覆層,進而對氧化鋅奈米材料之發光特性產生不同影響。
奈米級氧化鋁粉體是以溶液析出法(precipitation in aqueous solution)製備,得到以pseudo-boehmite和bayerite兩相為主的前趨物,經由不同溫度、環境之熱處理條件,可轉變為γ、δ、θ、α等不同晶相之氧化鋁粉體,並發現產物呈現極佳的發光特性;另一方面,也由解膠、稀釋後配置不同濃度之氧化鋁溶液,以進行後續披覆實驗。
一維氧化鋅奈米材料則利用水溶液法在鍍有氧化鋅薄膜之矽基版上生成。在極低的濃度(0.001 M)下於95 oC持溫反應24小時,得到直徑約為25 nm之氧化鋅奈米管,同條件下增加反應濃度至0.005 M則產物轉變為氧化鋅奈米線。氧化鋅晶體之生長可藉由結構導引劑(SDA)之添加來改變其生長特性,本實驗利用檸檬酸(citric acid)和1,3-二氨基丙烷(1,3-diaminopropane, DAP)之添加來控制氧化鋅之生長模式;微量的檸檬酸會使氧化鋅在<0001>方向之生長受到阻礙,而形成短柱狀甚至六角盤狀結構,然而在0.001M之低濃度氧化鋅溶液中加入檸檬酸,則會對氧化鋅之生長產生抑制,在95 oC下反應24小時,可得到分散的氧化鋅奈米管;而DAP之添加則有助於氧化鋅側向生長的可能,本實驗在0.001 M之氧化鋅溶液中加入微量DAP,將覆蓋氧化鋅奈米柱之矽基板置入溶液中進行第二段成長,得到特殊的氧化鋅奈米線之螺旋生長結構。
進行氧化鋁之披覆實驗時,調配不同的氧化鋁溶液濃度,即可得到不同厚度(1∼8 nm)之氧化鋁薄膜,而不同熱處理條件下可得到不同晶相的氧化鋁薄膜。氧化鋁薄膜的厚度大小會對一維氧化鋅奈米材料之光學性質有不同的影響,當披覆厚度約為8 nm時,其PL量測結果以氧化鋁之發光為主;若將氧化鋁披覆厚度降至1∼2 nm,則氧化鋁之放光不明顯,此時氧化鋁之披覆會使氧化鋅奈米管之本質光明顯增強,有助於氧化鋅奈米材料在紫外光發光元件上之應用。
A novel aqueous solution method has been developed for growing well-aligned alumina coated ZnO nanomaterials. The ZnO nanowires and ZnO nanotubes are synthesized by solution method on the Si wafer coated with ZnO film, and the organic structure-directing agents (SDAs), citric acid and diaminopropane (DAP), are found to play different roles in controlling the morphologies through the selective adsorptions on different crystal facets of ZnO.
Nano-sized pseudo-boehmite and bayerite mix powder is obtained through precipitation method and characterized using X-ray diffraction, HRTEM, PL and FTIR spectroscopy after thermal annealing. The as-synthesized powder will transfer into γ-phase by annealing process at 400 oC, and then change to α-phase over 1000 oC. Furthermore, it can be observed a strong blue emission from PL result. On the contrary, transparent conductive alumina film could be obtained after peptized growth process.
Alumina-coated ZnO nanowires are synthesized by aqueous solution method at low temperature. When the ZnO nanostructure is immersed into peptized alumina solution, the alumina shell would be form on the surface of ZnO nanostructure. The thickness of alumina film could be controlled by modulating the concentration of alumina solution; When the thickness about 8 nm, the alumina-coated nanowires show both the blue emission of alumina and the UV emission of ZnO after thermal annealing. However, ZnO nanotubes show obviously visible emission with increasing annealing temperature, while alumina-coated ZnO nanotubes exhibit a strong UV emission after thermal annealing.
中文摘要 I
英文摘要 III
誌謝 V
目錄 VIII
圖目錄 XII
第一章、緒論 1
第二章、氧化鋁奈米材料之合成與光學性質研究 3
2-1前言 3
2-2文獻回顧 3
2-2-1氧化鋁之製備 3
2-2-2氧化鋁之結構 5
2-2-3假形相轉換 9
2-2-4氧化鋁之發光特性 10
2-3實驗方法與步驟 11
2-3-1實驗流程圖與實驗步驟 11
2-3-2實驗設備與特性分析 13
2-4氧化鋁粉體之相變化與特性探討 17
2-4-1熱處理溫度對氧化鋁結構的影響 17
2-4-2熱處理氣氛對氧化鋁結構的影響 19
2-4-3氧化鋁粉體之發光特性與發光機制探討 20
2-5氧化鋁薄膜之結構變化 21
2-5-1解膠後pH值與氧化鋁薄膜形態之關係 21
2-5-2熱處理溫度對氧化鋁薄膜結構的影響 22
2-6結論 22
第三章、一維氧化鋅奈米材料之合成與發光特性探討 23
3-1前言 23
3-2文獻回顧 23
3-2-1一維氧化鋅奈米材料 23
3-2-2氧化鋅奈米晶體之結構與成長特性 24
3-2-3水溶液法製備氧化鋅奈米材料 25
3-2-4結構導引劑(SDA)對氧化鋅成長之影響 26
3-2-5氧化鋅之發光特性 29
3-3實驗方法與步驟 32
3-3-1實驗流程圖與實驗步驟 32
3-3-2實驗設備與特性分析 34
3-4反應條件對氧化鋅奈米柱成長之影響 36
3-4-1反應濃度、溫度、時間對氧化鋅奈米結構之影響 36
3-4-2檸檬酸鈉對氧化鋅奈米結構之影響 38
3-4-3雙氨基丙烷(DAP) 對氧化鋅奈米結構之影響 40
3-5氧化鋅奈米管之發光特性研究 41
3-6結論 43
第四章、氧化鋁披覆一維氧化鋅奈米材料之特性研究 44
4-1前言 44
4-2 文獻回顧 44
4-2-1氧化鋅奈米材料與鋁之參雜研究 44
4-2-2氧化鋁披覆氧化鋅奈米材料之研究 45
4-3實驗方法與步驟 48
4-3-1實驗流程圖與實驗步驟 48
4-3-2實驗設備與特性分析 49
4-4反應條件對氧化鋅/氧化鋁鍍膜材料之影響 51
4-4-1氧化鋁溶液濃度對披覆薄膜厚度之影響 51
4-4-2熱處理溫度對氧化鋁披覆之影響 52
4-5氧化鋁披覆一維氧化鋅奈米材料之光學性質研究 52
4-6結論 54
第五章、結論 55
參考文獻 57
1. Numerical Data and Functional Relationships in Science and Technology./v.22, Subvolume a. Intrinsic Properties of Group ⅣElements and Ⅲ-Ⅴ, Ⅱ-Ⅵ andⅠ-Ⅶ Compounds., Berlin: Springer-Verlag (1987).
2. K. Vanhausden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys. 79, 7983 (1996).
3. T. G. Peason, “The chemical background of the aluminum industry”, Monograph of the Royal Institute of Chemistry, London (1955).
4. M. Nguefack, A. F. Popa, S. Rossignol, C. Kappenstein, “Preparation of alumina through a sol-gel process. Synthesis, characterization, thermal evolution and model of intermediate boehmite” Phys. Chem. Chem. Phys., 5 , 4279 (2003).
5. J. Peric, R. Krstulovic, M. Vucak, “Investigation of dehydroxylation of gibbsite into boehmite by DSC analysis”, J. Therm. Anal., 46, 1339 (1996).
6. L. Candela, D. D. Perlmutter, “Kinetics of boehmite formation by thermal decomposition of gibbsite”, Ind. Eng. Chem. Res., 31, 694 (1992).
7. D. Mishra, S. Anand, R. K. Panda, R. P. Das, “Hydrothermal preparation and characterization of boehmites”, Mater. Lett., 42, 38 (2000).
8. D. Panias, A. Krestou, “Effect of synthesis parameters on precipitation of nanocrystalline boehmite from aluminate solutions”, Powder Technology, 175, 163 (2007).
9. X. Bokhimi, J. A. Toledo-Antonio, M. L. Guzman-Castillo, F. Hernandez-Beltran, “Relationship between crystallite size and bond lengths in boehmite”, J. Solid State Chem., 159, 32 (2001).
10. H. Ginsberg, W. Huttig, H. Stiehl, “Über die Fällung von Aluminiumhydroxiden aus Aluminatlaugen und Salzlösungen. Ein Beitrag zum System H2O/Al2O3”, Z. Anorg. Allg. Chem., 309, 233 (1961).
11. Z. P. Xie, J. W. Lu, “Influence of alpha-alumina seed on the morphology of grain growth in alumina ceramics from Bayer aluminum hydroxide”, Materials Letters, 57, 2501 (2003).
12. K. E. Evan, Chemistry of Aluminum, 258 (1993).
13. Z. P. Xie, J. W. Lu, “Influence of different seeds on transformation of aluminum hydroxides and morphology of alumina grains by hot-pressing”, Materials & Design, 24, 209 (2003).
14. G. K. Chuah, “The effect of digestion on the surface area and porosity of alumina”, Microporous and Mesoporous Materials, 37, 345 (2000).
15. G. Beyer, Fire Mater., 25, 193 (2001).
16. T. R. Hull, D. Price, “An investigation into the decomposition and burning behaviour of Ethylene-vinyl acetate copolymer nanocomposite materials”, Polymer Degradation and Stability, 82, 365 (2003).
17. M. Machida, M. Takenami, H. Hanada, “Intercalation of pseudo-boehmite: a novel preparation route to microporous Al–Ti oxide”, Solid State Ionics, 172, 125 (2004).
18. B. R. Baker, R. M. Pearson, “Water content of pseudoboehmite: A new model for its structure”, J. Catal., 33, 265 (1974).
19. A. Vijay, G. Mills, H. Metiu, “Structure of the (001) surface of γ alumina”, J. Chem. Phys., 117(9), 4509 (2002).
20. F. H. Streitz, J. W. Mintmire, “Energetics of aluminum vacancies in gamma alumina”, Phys. Rev. B, 60, 773 (1999).
21. Z. Q. Yu, D. Chang, C. Li, N. Zhang, Y. Y. Feng, Y. Y. Dai, “Blue photoluminescent properties of pure nanostructured γ–Al2O3”, Mater. Res. Soc., 16(7), 1890 (2001).
22. 顏富士, 張沛翎, “奈米級 α-氧化鋁粉體─由三水鋁石談起”, 科學發展, 408, 12 (2006).
23. G. S. Huang, X. L. Wu, Y. F. Mei, X. F. Shao, G. G. Siu, “Strong blue emission from anodic alumina membranes with ordered nanopore array”,J. Appl. Phys., 93(1), 582 (2003).
24. B. D. Evans, M. Stapelbroek, “Optical properties of the F+ center in crystalline Al2O3”, Phys. Rev. B, 18, 7089 (1978).
25. W. Chen, H. G. Tang, C. S. Shi, J. Dang, J. Y. Shi, Y. X. Zhou, S. D. Xia, Y. X. Wang, S. T. Yin, “Investigation on the origin of the blue emission in Titanium-doped sapphire -Is F+ color-center the blue emission center ”, Appl. Phys. Lett., 67, 317 (1995).
26. B. G. Draeger, G. P. Summers, “Defects in unirradiated alpha-Al2O3”, Phys. Rev. B, 19, 1172 (1979).
27. Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization”, J. Appl. Phys., 84, 3912 (1998).
28. WebElements Periodic Table (http://www.webelements.com/).
29. W. J. Li, E. W. Shi, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, 203, 186 (1999).
30. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater., 15, 464, (2003).
31. L. Vayssieres, K. Keis, S. –E. Lindquist, A. Hagfeldt, “Purpose-built anisotropic metal oxide material : 3D highly oriented microrod array of ZnO”, J. Phys. Chem. B, 105, 3350, (2001).
32. L. Vayssieres, K. Keis, A. Hagfeldt, S. –E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes”, Chem. Mater., 13, 4395, (2001).
33. J. Zhang, L. Sun, “Control of ZnO morphology via a simple solution route”, Chem. Mater., 14, 4172, (2002).
34. J. P. Jolivet, M. Gzara, J. Mazieres, J. Lefebvre, “Physicochemical study of aggregation in silver colloids”, J. Colloid Interface Sci., 107, 429 (1985).
35. A. López-Macipe, J. Gómez-Morales, R. Rodríguez-Clemente, “The Role of pH in the Adsorption of Citrate Ions on Hydroxyapatite”, J. Colloid Interface Sci., 200, 114 (1998).
36. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, H. Xu, “Complex and oriented ZnO nanostructures”, Nature Material, 2, 821 (2003).
37. H. Zhang, D. Yang, D. Li, X. Ma, S. Li, D. Que, “Controllable Growth of ZnO Microcrystals by a Capping-Molecule-Assisted Hydrothermal Process”, Crystal Growth & Desigh, 5(2), 547 (2005).
38. C. L. Kuo, T. J. Kuo, M. H. Huang, “Hydrothermal Synthesis of ZnO Microspheres and Hexagonal Microrods with Sheetlike and Platelike Nanostructures”, J. Phys. Chem. B, 109, 20115 (2005).
39. J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, Y. Qian, “Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles”, J. Phys. Chem. B, 109, 9463 (2005).
40. T. Zhang, W. Dong, M. K.-Brewer, S. Konar, R. N. Njabon, Z. R. Tian, “Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites”, J. Am. Chem. Soc., 128(33), 10960 (2006).
41. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films”, J. Lumin., 99, 149 (2002).
42. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys. 79, 7983 (1996).
43. C.J. Pan, C.W. Tu, C.J. Tun, C.C. Lee, G.C. Chi, “Structural and optical properties of ZnO epilayers grown by plasma-assisted molecular beam epitaxy on GaN/sapphire (0 0 0 1)”, J. Crys. Grow., 305, 133 (2007).
44. B. Lin, Z. Fu, Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl. Phys. Lett.,79(7), 943 (2001).
45. W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li, “Characteristics of ZnO:Zn phosphor thin films by post-deposition annealing”, Nucl. Instr. and Meth. in Phys. Res. B, 169, 59 (2000).
46. S. Bethke, H. Pan and B. W. Wessels, “Luminescence of heteroepitaxial zinc oxide”, Appl. Phys. Lett., 52, 138 (1988).
47. H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, D. C. Look, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy”, Appl. Phys. Lett., 77, 3761 (2000).
48. 陳虹蓓,國立交通大學材料科學工程學系碩士論文 (2004).
49. R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, “Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature”, Appl. Phys. Lett., 88(1), 1 (2006).
50. H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, B. K. Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique”, J. .Crys. Grow., 268, 596 (2004).
51. E. Burstein, Phys. Rev., 25, 7826 (1982).
52. Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White, “Synthesis of p-type ZnO films”, J. Crystal Growth, 216, 330 (2000).
53. M. Yan, H. T. Zhang, E. J. Widjaja, R. P. H. Chang, “Self-assembly of well-aligned gallium-doped zinc oxide nanorods”, J. Appl. Phys., 94, 5240 (2003).
54. J. J. Wu, S. C. Liu, ”Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition”, Adv. Mater., 14, 215 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊