跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林映眉
論文名稱:奈米碳載體與銀系、錳系、鈷系觸媒於鹼性燃料電池陰極之研究
論文名稱(外文):Carbonaceous Materials and Ag-, Mn-, Co-, Electrocatalysts for Oxygen Reduction Reaction in Alkaline Fuel Cell
指導教授:林鵬林鵬引用關係吳樸偉
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:79
中文關鍵詞:碳材體含浸法奈米碳球極化曲線
外文關鍵詞:CNC
相關次數:
  • 被引用被引用:2
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在燃料電池之氣體擴散電極中,碳載體的選擇與觸媒種類的採用為相當重要的一環。在本研究中,我們以三種不同的碳材體(比表面積333 m2/g奈米碳球CNC、比表面積254 m2/g的Vulcan XC72與比表面積1500 m2/g的Black Pearl 2000做為氣體擴散電極,並且也利用承載同樣的觸媒後,探究其於氧氣還原反應中的催化活性。實驗結果顯示CNC在三者中為最佳的觸媒載體。
而後利用含浸法在奈米碳球上承載銀粒子、氧化錳、以及氧化鈷等催化劑,在極化曲線中均比無添加催化劑的CNC有更好的表現,三者之中銀粒子的添加表現最佳。由掃瞄式電子顯微鏡圖像與X-ray繞射圖顯示在奈米碳球中的銀粒子呈現直徑150-280 nm之球形且為良好的FCC晶型結構。
另外我們進一步利用化學還原法還原銀粒子。穿透式電子顯微鏡照片顯示我們在無使用保護劑下,將銀粒子直徑成功縮小至5-15 nm。並進一步顯示更好極化曲線中的表現(每單位公分1毫克的添加量,在電流密度200 mA/cm2下,電壓輸出0.95 V)。
The types of carbonaceous materials and electrocatalysts are crucial for gas diffusion electrode (GDE). In this study, GDEs made of catalyzed and non-catalyzed carbonaceous materials were investigated for their electrocatalytic performances in oxygen reduction reaction (ORR). Carbon nanocapsules (CNCs, 333 m2/g), Vulcan XC72 (254 m2/g), and Black Pearl 2000 (1500 m2/g) were chosen to fabricate GDEs. The results showed that CNC were an excellent catalyst support among these three candidates.
Moreover, CNCs impregnated with Ag, MnOx, CoOx also demonstrated significant improvements in i-V curves over non-catalyzed CNCs. Among them, the Ag-CNC exhibited the highest performance. The SEM images and X-ray diffraction pattern demonstrated that Ag embedded in CNCs was in spherical shape with 150-280 nm in diameter showing well-crystallized FCC structure.
In addition, the wet-chemical method was used to reduce Ag+ on CNCs. TEM images revealed that the particle size of Ag were successfully reduced to 5-15 nm without any protecting agent. Furthermore, the i-V curve showed that nano Ag-CNCs GDE exhibited superb electrocatalytic performance, delivering 0.95 V at 200 mA/cm2 with catalyst loading of 1 mg/cm2.
第一章 前言.......................................1
第二章 文獻回顧……………………………………………3
2.1燃料電池簡介………………………………………….….…3
2.2燃料電池的分類………………………………………………4
2.2.1高溫型燃料電池: 固態氧化物燃料電池(SOFC)..5
2.2.2高溫型燃料電池: 融熔碳酸鹽燃料電池(MCFC)..5
2.2.3中溫型燃料電池: 磷酸燃料電池(PAFC)…………6
2.2.4低溫型燃料電池: 質子交換膜燃料電池(PEMFC)...7
2.2.5低溫型燃料電池:鹼性燃料電池(AFC)………….9
2.3氣體擴散電極結構………………………………………10
2.3.1 空氣陰極的結構簡介………………………10
2.3.2 氣體擴散層之碳載體……………12
2.4電極動力學……………………………………………….13
2.4.1 氫氣氧化反應……………………………………13
2.4.2 空氣陰極之氧氣還原反應………………………14
2.4.3 電池極化反應現象………………………………20
第三章 實驗程序…………………………………………22
3.1實驗試藥………………………………………………….22
3.2實驗裝置…………………………………………………23
3.3實驗流程…………………………………………………24
3.3.1催化劑製備-含浸法(impregnation method)........24
3.3.2奈米銀/奈米碳球催化劑製備-化學還原法............26
3.3.3氣體擴散膜(gas diffusion layer)的製備.........27
3.3.4空氣陰極的製作...............28
3.4分析儀器………………………………………………….28
3.4.1高解析度X光繞射儀………………………………28
3.4.2比表面積測定儀…………………………………….28
3.4.3化學分析電子儀…………………………………….30
3.4.4掃瞄式電子顯微鏡………………………………….30
3.4.5穿透式電子顯微鏡………………………………….30
3.4.6電化學量測………………………………………….31
第四章 結果與討論…………………………………41
4.1不同碳載體承載銀粒子之電催化活性探討…………41
4.1.1不同碳載體粉末之掃瞄式電子顯微鏡觀測結果…41
4.1.2比表面積(BET)分析結果……………………….41
4.1.3含浸銀粒子後的X光繞射圖之結果………………42
4.1.4空氣陰極極化曲線測試(i-V curve)……………..42
4.2銀系、錳系、鈷系觸媒承載於奈米碳球之催化活性探討.44
4.2.1 X光繞射儀之結果討論……………………………45
4.2.2 比表面積(BET)分析結果………………………46
4.2.3 ESCA化學分析結果……………………………… 46
4.2.4 掃瞄式電子顯微鏡觀測結果…………………….47
4.2.5 電化學測試結果-催化活性比較…………………47
4.3利用化學還原法在奈米碳球上吸附奈米銀粒子………48
4.3.1 X光繞射儀之結果討論……………………………49
4.3.2 穿透式電子顯微鏡(TEM)觀測結果比較………49
4.3.3 掃瞄式電子顯微鏡觀測結果……………………50
4.3.4 空氣陰極極化曲線測試(i-V curve)及定電流放電曲線…50
第五章 結論與建議...............................72
參考文獻...........................................74
[1]. M. Stuve, ‘Fuel Cell Engineering Course Notes’, 1998.
[2]. B.C.H. Steele, A. Heinzel, ‘Materials for fuel cell technologies’, Nature, v414, p.345, 2001.
[3]. K.Kordesch: ‘Ulmann’s encyclopedia of industrial chemistry’, Vol.A12, p.82, John Wiley & Sons, 1987.
[4]. A. J. Appleby and F. R. Foulkes, ‘Fuel cell handbook’, p.540, John Wiley & Sons, 1993.
[5]. J. O’M. Bockris and S. Srinivasan, ‘Fuel Cell’, p.179, McGraw-Hill, 1993.
[6]. S. Litster and G. McLean, ‘PEM fuel cell electrodes’, J. Power Sources, v130, p.61, 2004.
[7]. G.F. McLean ., T. Niet, S. Prince-Richard, and N. Djilali, ‘An assessment of alkaline fuel cell technology’, International Journal of Hydrogen Energy, v27, p.507, 2002.
[8]. 周震濤,王剛,「電池」, v33 ,p.6, 2003。
[9]. 劉霖錡,「鋅空氣電池空氣極的製備與性能」,私立逢甲大學碩士論文. 2003
[10]. Massoud Pirjamali, Yohannes Kiros,J. Power Sources, v109, p.446, 2002.
[11]. Mario Maja, Claudio Orecchia, Morela Strano, Paolo Tosco,Marco Vanni, Electrochim. Acta., v46, p.423,2000
[12]. 辛毓真,「鑭鈣銅氧相關系列催化劑在鋅-空氣電池中還原反應之研究」,國立交通大學碩士論文,2006。
[13]. 呂秉錚,「可機械充電式鋅空氣電池之電鍍鋅電極製程與其電化學行為之研究」,國立清華大學碩士論文. 2001.
[14]. Eniya Listiani Dewi, Kenichi Oyaizu, Hiroyuki Nishide, and EishunTsuchida,J. Power Sources, v115, p.149, 2003.
[15]. K. Tomantschger, R. Findlay, M. Hanson, K. Kordesch, S. Srinivasan, ‘Degradation modes of alkaline fuel cells and their components’, J. Power Sources, v39, p.21, 1992.
[16]. N. Staud, P.N. Ross, ‘The corrosion of carbon black anodes on alkaline electrolyte’, J. Electrochem. Soc., v133, p.1079, 1986.
[17]. T.J. Schmid, H.A. Gasteiger, R.J. Behm, ‘Rotating disk electrode measurements on the CO tolerance of a high-surface area Pt/vulcan carbon fuel cell catalyst’, J. Electrochem. Soc., v146, p.1296, 1999.
[18]. G. Nadeau, X.Y. Song, M. Masse, A. Guerfi, G. Brisard, K. Kinoshita, K. Zaghib, ‘Effect of heat-treatment and additives on the particles and carbon fibers as anodes for lithium-ion batteries’, J. Power Sources, v108, p.86, 2002.
[19]. R. Yang, X. Qiu, H. Zhang, J. Li, W. Zhu, Z. Wang, X. Huang, L. Chen, ‘Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol’, Carbon, v43, p.11 , 2005.
[20]. A.L. Dicks: ‘The role of carbon in fuel cells’, J. Power Sources, v156, p.128, 2006.
[21]. S. Iijima, ‘Helical microtubules of graphitic carbon’, Nature, v354, p.56, 1991.
[22]. T.C. Liu, Y.Y. Li, ‘Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method’ Carbon, v44, p.2405 2006.
[23]. A. Kongkanand, S. Kuwabata, G. Girishkumar, P. Kamat, ‘Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction’, Langmuir, v22, p.2392, 2006.
[24]. H. Huang, W. Zhang, M. Li, Y. Gan, J. Chen, Y. Kuang, ‘Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries’, J. Colloid and Interface Sci., v284, p.593, 2005.
[25]. E. Yeager, ‘Dioxygen electrocatalysis: mechanisms in relation to catalyst structure’, J. Mol. Catal., v38, p.5, 1986.
[26]. J. Maruyama , M. Inaba, and Z. Ogumi, ‘Rotating ring-disk electrode study on the cathodic oxygen reduction atNafion®-coated gold electrodes’, Journal of Electroanalytical Chemistry, v 458, p.175–182, 1998.
[27]. U.A. Paulus , T.J. Schmidt , H.A. Gasteiger , and R.J. Behm, ‘Oxygen reduction on a high-surface area Pt:Vulcan carboncatalyst: a thin-film rotating ring-disk electrode study’, Journal of Electroanalytical Chemistry, v495, p.134–145, 2001.
[28]. Kinoshita, and Kim, ‘Electrochemical oxygen technology’, John Wiley & Sons, New York,1992.
[29]. J. R. Goldstein, and A. C. C. Tseung, Nature., v222, p. 869. 1969.
[30]. U. R. Evans, Nature, v218, p.602, 1968.
[31]. A. C. C. Tseung, and H. L. Bevan, Electroanalytical Chemistry and Interfacial Electrochemistry, v45, p. 429, 1973.
[32]. Y. Matsurmoto, H. Yoneyama, and H. Tamura, Bull. Chem. Soc.Jpn., v51 , p.1927, 1978.
[33]. Y. Matsumoto, and E. Sato, Electrochimica Acta, v25,p.585, 1980
[34]. X. Li, I.-M. Hsing, ‘The effect of the Pt deposition method and the support on Pt dispersion on carbon nanotube’. Electrochim. Acta, v51, p.5250, 2006.
[35]. E. Lafuente, E. Muñoz, A.M. Benito, W.K. Maser, M.T. Martínez, F. Alcaide, L. Ganborena, I. Cendoya, O. Miguel, J. Rodríguez, E.P. Urriolabeitia,and R. Navarro, Single-walled carbon nanotube-supported platinum nanoparticles as fuel cell electrocatalysts. J. Mater. Res., v21, p.2841, 2006.
[36]. J. Ding, K.Y. Chan, J. Ren, and F.S. Xiao, ‘Platinum and platinum–ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions’. Electrochim. Acta, v50, p.3131, 2005.
[37]. S. Gamburzev, K. Petrov, and A.J. Appleby, ‘Silver–carbon electrocatalyst for air cathodes in alkaline fuel cells’, J. Appl. Electrochem., v32, p.805, 2002.
[38]. K.-S. Chou, C.-Y. Ren, Synthesis of nanosized silver particles by chemical reduction method’, Mater. Chem. Phys., v64, p.241, 2000.
[39]. Z. Tang, S. Liu, S. Dong, and E. Wang, ‘Electrochemical synthesis of Ag nanoparticles on functional carbon surface’, J. Electroanal. Chem., v502, p.146, 2001.
[40]. S. Ardizzone, M. Falciola, and S. Trasatti, ‘Effect of the nature of the precursor on the electrocatalytic properties of thermally prepared ruthenium oxide’, J. Electrochem. Soc., v136, p.1545 ,1989.
[41]. V.S. Bagotzky, N.A. Shumilova, and E.I. Khrushcheva, ‘Electrochemical oxygen reduction on oxide catalysts’. Electrochim. Acta, v21, p.919, 1975.
[42]. Z.D. Wei, W.Z. Huang, S.T. Zhang, J. Tan, ‘Induced effect of Mn3O4 on formation of MnO2 crystals favorable to catalysis of oxygen reduction’. J. Appl. Electrochem., v30, p.1133, 2000.
[43]. S.K. Tiwari, P. Chartier, R.N. Singh, ‘Preparation of perovskite- type oxides of cobalt by the malic acid aided process and their electrocatalytic surface properties in relation to oxygen evolution’. J. Electrochem. Soc., v142, p.148, 1995.
[44]. S. Müller, K. Striebel, and O. Haas, ‘La0.6Ca0.4CoO3: a stable and powerful catalyst for bifunctional air electrodes’, Electrochim. Acta, v39, p.1661, 1994.
[45]. N.L. Wu, W.R. Liu, and S.J. Su, ‘Effect of oxygenation on electrocatalysis of La0.6Ca0.4CoO3−x in bifunctional air electrode’, Electrochim. Acta, v48, p.1567, 2003.
[46]. C.K. Lee, K.A. Striebel, F.R. McLarnon, E.J. Cairns, ‘Thermal treatment of La0.6Ca0.4CoO3 perovskites for bifunctional air electrodes’. J. Electrochem. Soc., v144, p.3801, 1997.
[47]. J.O’M. Bockris and T. Otagawa, ‘The electrocatalysis of oxygen evolution on perovskites’. J. Electrochem. Soc., v131, p.290, 1984.
[48]. J. Ponce, J.–L. Rehspringer, G. Poillerat, J.L. Gautier, ‘Electrochemical study of nickel–aluminium–manganese spinel NixAl1−xMn2O4. Electrocatalytical properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media’. Electrochim Acta, v46, p.3373, 2001.
[49]. M. Sugawara, M. Ohno, and K. Matsuki, ‘Oxygen reduction catalysis of Mn–Co spinel oxides on a graphite electrode in alkaline solution’, J. Mater. Chem., v7, p.833, 1997.
[50]. M.E. Baydi, S.K. Tiwari, R.N. Singh, J.– L. Rehspringer, P. Caritier, J.F. Koenig, and G. Poillerat, ‘High specific surface area nickel mixed oxide powders LaNiO3 (perovskite) and NiCo2O4 (spinel) via sol-gel type routes for oxygen electrocatalysis in alkaline media’. J. Solid State Chem., v116, p.157, 1995.
[51]. F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdano, and I. Herrmann, ‘Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells’. Electrochem. Commun., v7, p.1405, 2005.
[52]. 辛毓真,「鑭鈣銅氧相關系列催化劑在鋅-空氣電池中還原反應之研究」,國立交通大學碩士論文,2006
[53]. 汪建民主編,「材料分析」,中國材料科學學會. 2004.
[54]. T.C. Liu, Y.Y. Li, ‘Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method’ Carbon, v44, p.2405 2006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top