跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/15 04:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳家敏
研究生(外文):Chia-Min Chen
論文名稱:使用新頻率補償技術並具有高穩定度與高精確度之低壓降線性穩壓器
論文名稱(外文):A New Frequency Compensated Low-Dropout Voltage Regulator With Wide Stable Range and High Precision
指導教授:洪崇智
指導教授(外文):Chung-Chih Hung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院IC設計產業專班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:92
中文關鍵詞:低壓降線性穩壓器等效串聯電阻頻率補償能帶差參考電壓源
外文關鍵詞:Low-Dropout Linear RegulatorEquivalent Series ResistorFrequency CompensationBandgap Voltage Reference
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1084
  • 評分評分:
  • 下載下載:362
  • 收藏至我的研究室書目清單書目收藏:1
本研究致力於不需負載電容及寬穩定度範圍和快速暫態切換特性之低壓降線性穩壓器(LDO Regulator)的實現。我們提出兩個全新的頻率補償架構於穩壓器電路。本論文提供系統晶片(System on a Chip,簡稱SoC)或可攜式產品的電源管理系統可以完全移除晶片外部大體積電容的解決方法。
首先,設計增強型主動回授補償技術去加強頻率響應。此低壓降線性穩壓器從負載電流0 mA至100 mA範圍內,在沒有負載電容的情況下仍然可以提供高穩定度,或是當LDO穩壓器外部有負載電容時,其等效串聯電阻(Equivalent Series Resistor, ESR)可以有較寬範圍的設計值。而且,此技術僅需兩個很小的補償電容,這樣可以讓我們輕易地將補償電容整合到LDO穩壓器晶片內部。所設計的系統輸出電壓為1.5 V,最大可承受負載電流為100 mA。
最後,提出一個精簡型CMOS參考電壓源利用臨界電壓和遷移率溫度係數相互補償並使用基底電位微調技術。所設計的參考電壓源具有低溫度係數(≈ 14 ppm/℃),而且最小的供應電壓為一伏特。在沒有濾波電容情況下,低頻時的電源拒斥比大於 60 dB。本論文所呈現之晶片都是使用台積電0.35微米2P4M 標準互補式金氧半製程來作設計。
The research focuses on the realization of cap-less, wide stable range, and fast transient low dropout (LDO) linear regulator. We present two novel frequency compensation architecture for LDO circuit. The thesis provides a solution for power management system of portable devices. It can also be embedded in SoC (System on a Chip) to fully remove bulky external capacitors.
First, an enhanced active feedback frequency compensation technique is employed to improve its frequency response. This LDO can provide high stability for loading current from 0 mA to 100 mA without loading capacitors or with loading capacitors which have wide range ESR (equivalent series resistance). Moreover, this technique only requires two small compensation capacitors. This allows us to integrate the compensation capacitors within the LDO chip easily. The system has an output voltage of 1.5 V and a maximum current capability of 100 mA.
Finally, a compact CMOS voltage reference based on the mutual compensation of threshold voltage and mobility temperature coefficients with body potential trimming technique is presented. This voltage reference has a low temperature coefficient (≈ 14 ppm/℃), and the minimum supply voltage is 1V. The power supply rejection ratio without any filtering capacitor at low frequency are larger than 60 dB. The proposed chips in this thesis were fabricated using a standard TSMC 0.35 μm 2P4M CMOS process.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiv
Chapter 1 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 3

Chapter 2 低壓降線性穩壓器的基礎 4
2.1 低壓降線性穩壓器之簡介與應用 4
2.2 規格與特性 6
2.2.1 輸出電壓差(Dropout Voltage) 6
2.2.2 負載穩壓(Load Regulation) 6
2.2.3 線上穩壓(Line Regulation) 7
2.2.4 暫態響應(Transient Response) 8
2.2.5 靜態電流(Quiescent Current) 10
2.2.6 效率(Efficiency) 11
2.2.7 電源拒斥比(Power Supply Rejection Ratio) 11
2.2.8 輸出雜訊(Output Noise) 12
2.2.9 電壓精確度(Voltage Accuracy) 12
2.3 低壓降線性穩壓器電路設計的相關考量 14
2.4 傳統低壓降線性穩壓器的頻率響應及穩定度分析 16
2.5 文獻回顧 19

Chapter 3 具有高穩定度與高精確度之低壓降線性穩壓器 21
3.1 提出新的低壓降線性穩壓器之補償技術 21
3.1.1 電路架構 21
3.1.2 頻率響應與小訊號分析 22
3.1.3 模擬迴路增益的方法 26
3.1.4 穩壓器內部雜訊分析 27
3.2 模擬結果 29
3.3 晶片佈局圖與電路板 37
3.4 實驗結果 38
3.4.1 測試考量 38
3.4.2 量測結果 39

Chapter 4 具有強健的頻率補償且不需外部電容之低壓降線性穩壓器 45
4.1 提出新的低壓降線性穩壓器之補償技術 45
4.1.1 電路架構 45
4.1.2 頻率響應與小訊號分析 47
4.2 模擬結果 50
4.3 晶片佈局圖與電路板 60
4.4 實驗結果 61
4.4.1 測試考量 61
4.4.2 量測結果 62

Chapter 5 可操作於一伏特供應電壓且溫度係數14ppm/℃之參考電壓源 69
5.1 簡介 69
5.2 參考電壓源基本操作原理 69
5.2.1 負溫度係數電壓 69
5.2.2 正溫度係數電壓 70
5.2.3 傳統的帶差參考電路 70
5.3 文獻回顧 71
5.4 研究動機 75
5.5 設計新的參考電壓源 75
5.5.1 電路架構 75
5.5.2 操作原理與理論分析 76
5.6 模擬結果 78
5.7 晶片佈局圖與電路板 84
5.8 實驗結果 85
5.8.1 測試考量 85
5.8.2 量測結果 86

Chapter 6 結論 89

參考文獻 91
[1] G. A. Rincon-Mora and P. E. Allen, “Optimized Frequency-Shaping Circuit Topologies for LDO’s,” IEEE Transactions on Circuits and System-II, vol. 45, pp.703-708, June 1998.

[2] D. S. Ma, W. H. Ki and C. Y. Tsui, ”An Integrated One-Cycle Control Buck Converter with Adaptive Output and Dual Loops for Output Error Correction,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 140-149, Jan. 2004.

[3] G. A. Rincon-Mora and P. E. Allen, “A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 36-43, Jan. 1998.

[4] Xiaohua Fan, Chinmaya Mishra and Edgar Sanchez-Sinencio, ”Single Miller Capacitor Frequency Compensation Technique for Low-Power Multistage Amplifiers,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 584-592, Mar. 2005.

[5] G. A. Rincon-Mora, “Active Capacitor Multiplier in Miller-Compensated Circuits” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 26-32, Jan. 2000.

[6] C. K. Chava, and J. Silva-Martinez, “A frequency compensation scheme for LDO voltage regulators,” IEEE Transation on Circuits and Systems I, vol. 51, pp. 1041-1050, June. 2004.

[7] G. W. den Besten and B. Nauta, “Embedded 5 V-to-3.3 V voltage regulator for supplying digital IC’s in 3.3 V technology,” IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 956-962, July 1998.

[8] G. A. Rincon-Mora, “Current Efficient, Low Voltage, Low-Dropout Regulators,” Ph.D. Thesis,Atlanta, GA: Georgia Institute of Technology, 1996.

[9] Jim Williams, “Minimizing Switching Regulator Reside in Linear Regulator output,” Linear Technology Application Report, Note 101, pp.1-11, July 2005.

[10] B. S. Lee, “Technical review of low dropout voltage regulator operation and performance,” Texas Instruments Application Report, SLVA072, Aug. 1999.

[11] B. S. Lee, “Understanding the Terms and Definitions of LDO Voltage Regulators,” Texas Instruments Application Report, SLVA079, Oct. 1999.

[12] R. J. Milliken, “A Capacitor-less Low Drop-out Voltage Regulator with Fast Transient Response,” M.S. Thesis, Texas A&M University, 2005.

[13] K. N. Leung and P. K. T. Mok, “A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1691-1701, Oct. 2003.

[14] Peter Hazucha, Tanay Karnik, Bradley A. Bloechel, Colleen Parsons, David Finan, and Shekhar Borkar, “Area-Efficient Linear Regulator With Ultra-Fast Load Regulation,” IEEE J. Solid-State Circuits, vol. 40, pp. 933-940, April 2005.

[15] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York, NY: Oxford, 2002.

[16] B. Razavi, Design of Analog CMOS Integrated Circuit, New York: McGraw-Hill, 2001.

[17] H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi and K. Sakui, “A CMOS Bandgap Reference Circuit with Sub-1-V Operation,” IEEE J. Solid-State Circuits, vol. 34, pp. 670-674, May 1999.

[18] K. N. Leung and P. K. T. Mok, “A Sub-1V 15-ppm/℃ CMOS Bandgap Voltage Reference without Requiring Low Threshold Voltage Device,” IEEE J. Solid-State Circuits, vol. 37, pp. 526-530, Apr 2002.

[19] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, New York: John Wiley & Sons, 2001.

[20] K. N. Leung and P. K. T. Mok, “A CMOS Voltage Reference Based on Weighted for CMOS Low-Dropout Linear Regulators,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 146-150, Jan. 2003.

[21] G. Giustolisi, G. Palumbo, M. Criscione, and F. Cutrì, “A Low-Voltage Low-Power Voltage Reference Based on Subthreshold MOSFETs,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 151-154, Jan. 2003.

[22] A. E. Buck, C. L. McDonald, S. H. Lewis and T. R. Viswanathan, “A CMOS Bandgap Voltage Reference without Resistors,” IEEE J. Solid-State Circuits, vol. 37, pp. 81-84, Jan. 2002.

[23] Y. Jiang and E. K. F. Lee, “Design of Low-Voltage Bandgap Reference Using Transimpedance Amplifier,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 552-555, June 2000.

[24] Giuseppe De Vita, Giuseppe Iannaccone, “An ultra-low-power, Temperature Compensated Voltage Reference Generator”, IEEE Custom Integrated Circuits Conference, 2005, pp. 751-754.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 汪真滿、陳凱俐,2000,遊憩資源之遊憩效益評估-以宜蘭縣為例,宜蘭技術學報,5期,91-104。
2. 吳宗瓊、潘治民,2004,觀光慶典活動遊客花費與整體經濟效果之評估研究—以國際童玩節為例,戶外遊憩研究,17卷,1期,1-21。
3. 王雯君、張維安,2003,客家文化與產業創意:2004年客家桐花祭之分析,中央大學社會文化學報,18期,121-146。
4. 鄭蕙燕、闕雅文,1997,鰲鼓海岸濕地遊憩經濟價值評估,戶外遊憩研究,10卷,4期,7-18。
5. 鄭琦玉、楊文燦,1995,遊憩衝擊認知及其滿意度關係之研究,戶外遊憩研究,8卷,2期,109-132。
6. 劉癸君、林喻東,2002,阿里山森林遊樂區櫻花季之效益評估—以旅遊成本法為例,林業研究季刊,24卷,2期,19-28。
7. 陸雲,1990,環境資源估價之研究—非市場估價法,經濟論文,18卷,1期,93-129。
8. 陳麗琴,2003,漫談旅遊成本法,林業研究專訊,10卷,2期,15-16。
9. 陳凱俐、溫育芳,1995,遊憩區經濟效益評估法之應用—以國立宜蘭農工專科學校實驗林場為例,農業經濟叢刊,1卷,1期,87-116。
10. 陳凱俐、張高誠,2003,休閒農業及產業文化活動之經濟效益評估,宜蘭大學學報,1卷,91-103。
11. 陳凱俐、林雲雀,2005,不同旅遊需求函數設定下之遊憩效益比較-以宜蘭縣為例,農業與經濟,34卷,91-120。
12. 陳凱俐,1998a,森林遊樂區遊客遊憩體驗及遊憩效益影響因素之探討—以棲蘭森林遊樂區為例,宜蘭技術學報,1期:27-37。
13. 洪春吉,1999,台灣地區中、美、日資企業主管之企業文化與企業倫理、領導行為之實證比較,交大管理學報,19卷,1期,87-123。