跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/21 20:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林心瑜
研究生(外文):Shin-Yu Lin
論文名稱:低溫多晶矽薄膜電晶體之高效能電壓移轉驅動電路研究
論文名稱(外文):Study on the High Performance Level Shifter Driving Circuits with Low Temperature Poly-Si Thin Film Transistors
指導教授:鄭晃忠鄭晃忠引用關係
指導教授(外文):Huang-Chung Cheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院IC設計產業專班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:73
中文關鍵詞:低溫多晶矽薄膜電晶體驅動電路LCD
外文關鍵詞:LTPS TFTDriving cicuitsLCD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:602
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:1
在本篇論文中,我們以低溫複晶矽薄膜電晶體為基礎,提出了三種新電壓轉電路適用於主動式液晶顯示器及主動式有機發光顯示器。
為了設計電壓轉移電路,一開始我們先針對數種電壓轉移器包含了傳統式電壓轉移器使用HSPICE 做模擬並且探討電路架構、優缺點、效能…等等。從模擬的結果我們發現這些電路都有高功率消耗的特性存在,特別是傳統式的電壓移轉器。因此設計ㄧ個低功耗的電壓移轉器成為最初設計的出發點。我們提出了一電壓移電路-A目的是減少直流功率消耗。電路A是由一個P通道薄膜電晶體和二個N通到薄膜電晶體及一儲存電容所組成的,利用T3薄膜電晶體提供了回授路徑去抑制個電路的直流功率消耗。經由模擬及實際量測的結果發現所提出來的電壓移轉器-A的確在直流的功率消號上有明顯的減少。
運用低溫多晶矽薄膜電晶體實現系統整合在面板的技術會幾項重要的挑戰除了之前提到的功率消耗的問題及驅動能力的問題主要是因為低溫矽薄膜電晶體相較於金屬 氧化半導體場效電晶體有較高的臨界電壓及變異性,因此針對電路的驅動能力我們提出了電壓移轉器-B。電壓移轉器-B除了保有電壓移轉器-A之架構外,還多了ㄧ級輸入訊號的增強設計是由一組反向器所組成,經由模擬及量測的結果電壓移轉器-B 可將0到3.3 輸入電壓將輸出電壓平移到約 10 到 -10 電壓。
最後,因為先前提出來的電壓移轉器-A及電壓移轉器-B架構裡之儲存電容值(C1)約有0.0.1nF所以會有較大的Layout 尺寸。因為考量到面積的問題進而提出了電壓移轉器-C,電壓移轉器-C一樣是以電壓移轉器-A的架構來做延伸除了沒有儲存電容(C1)之外,還多了P通道薄膜電晶體(T4)及控制訊號(/IN)。由模擬及量測的結果得知電壓移轉器-C可以順利將0到5的輸入電壓提升到約10到-10輸出電壓。
In this thesis, three novel simple level shifter circuits using low-temperature polycrystalline silicon thin film transistors (LTPS TFTs) for the integrated scan driver and scan driver of AMLCD and AMOLED has been proposed.
For design the level shifter circuit, the power dissipation, output characteristics, advantage, disadvantage of several level shifter circuits is first studied by HSPICE circuit simulator. It is observed that high power consumption and low efficiency exist in the several level shifter circuits especially conventional level shifter circuit. First, the low power dissipation of system-on-panel (SOP) technology for LTPS TFTs is studied from the view point of circuit design. We proposed level shifter circuit_A to reduced direct current (DC) power dissipation. In proposed level shifter circuit_A composed of two n-type thin film transistors, one p-type thin film transistors, one storage capacitor and one control signal therefore, a level shifter circuit with simple circuit configuration is achieved, and furthermore to utilize n-type TFT (T3) apply for feed back voltage to gate of n-type TFT (T2) and then restrain direct current (DC) power consumption in level shifter circuit_A.
Base on level shifter circuit_A skeleton, we also proposed level shifter circuit_B consideration of high efficiency that is mean low-amplitude voltage input signal to obtain high-amplitude voltage output signal. In proposed level shifter circuit_B in addition to circuit_A skeleton, has input setting bias compose of p-type TFT (T4) and n-type TFT (T5), input setting bias can help circuit_B use low input voltage to obtain high voltage amplitude, and then achieve high efficiency.
Finally, we propose level shifter circuit_C consideration of small layout area, because in proposed circuit_A and circuit_B have storage capacitor (C1) about 0.01nF. Consequently, we use one more p-channel TFT (T4) and control signal (/IN) instead of storage capacitor (C1). Form propose level shifter circuit_C configuration, we can known the layout area size small than proposed circuit_A and circuit_B and also keep low power dissipation characteristics because base on proposed circuit_A except storage capacitor (C1).
Abstract (in Chinese)……………………………………..……………………i
Abstract (in English)………………………………………………………….iii
Acknowledgments (in Chinese)……………………………………………….v
Contents……………………………...…………………………………….....vi
Table Lists…………………………………………………………...………viii
Figure Captions………………………………………………………...……..ix

Chapter 1 Background Introduction……………………………..1

1.1 Flat Panel Display Technology Overview………………………………………………1
1.2 Overview of the Applications of Thin Film Transistors (TFTs)………...………………9
1.3Integrated Driving Circuits of Displays………………………………………..……….11

Chapter 2 Overview of All Kinds of Level Shifter Circuits Using LTPS TFT for Active Matrix Displays…………..….19
2.1 Background Introduction………………………………………………………………19
2.2 Design Considerations of Level Shifter Circuit…………………………………..……24
2.3 All Kinds of Level Shifter Circuits………………………………………........................25
2.3.1 Conventional Level Shifter Circuit………………………………………………26
2.3.2 NEC Low-Power Level Shifter Circuit…………………………………………..30
2.3.3 Sharp Level shifter Circuit……………………………………………………….33
2.3.4 Current Mode Logic Level shifter Circuit……………………………………….36
2.4 Comparison of Several Kind Level Shifter Circuits…………………………………...39
2.5 Motivation……………………………………………………….……………………..41
2.6 Summary and Conclusions…………………………………………………….………42

Chapter 3 Proposed Level Shifter Circuit Using Low-Temperature Polycrystalline Silicon Thin Film Transistors………………………………………….….43
3.1 Introduction……………………………………………………………………………43
3.2 Proposed Level Shifter Circuit_A for Low Power Consumption……………………..44
3.3 Proposed Level Shifter Circuit_B for Low Input Voltage Driving……………………49
3.4 Proposed Level Shifter Circuit_C for Small Layout Area…………………………….55
3.5 Fabrication Process and Measurement Result of the Proposed Level shifter Circuits..60
3.5.1 Measurement Result of the Proposed Level Shifter Circuit_A…………………62
3.5.2 Measurement Result of the Proposed Level Shifter Circuit_B…………………64
3.5.3 Measurement Result of the Proposed Level Shifter Circuit_C…………………66
3.6 Comparisons between the Proposed Level Shifter Circuits and Level Shifter Circuits……………………………………………………………………………….69
3.7 Summary and Conclusions……………………………………………………………71
Chapter 4 Summary and Conclusions…………………………..73

References……………………………………...…………………75

Vita
Chapter 1:
[1.1] Chi-Wen Chen, Ting-Chang Chang, Po-Tsun Li, Hau-Yan Lu, Kao-Cheng Wang, Chen-Shuo Huang, Chia-Chun Ling and Tesung-Yuen Tseng, “High-performance hydrogenated amorphous-Si TFT for AMLCD and AMOLED applications,” IEEE Electron Device Letters, vol.26, pp.731-733, 2005.
[1.2] Kinoshita H., Kitahara H., Schleupen K., Colgan E.G., Nunes R., Kodate M., and Takasugi S., “High-resolution AMLCD made with a-Si:H TFTs and an Al gate and IZO structure,” Journal of the Society for Information Display, vol.7, pp.265-267, 1999.
[1.3] Corbin Church and Arokia Nathan, “Amorphous-silicon TFT AMOLEDs,” Information Display, vol.21, pp.22-26, 2005.
[1.4] D. E. Carlson and C. R. Wronki, “Amorphous Silicon Solar Cell,” Appl. Phys. Lett. Vol. 28, pp. 671-673, 1976.
[1.5] M. J. Thompson and H. C. Tuan, “Amorphous Si Electronic Devices and Their Applications,” Technical Digest - International Electron Devices Meeting, pp. 192-195, 1986.
[1.6] S. Tomiyama, T. Ozawa, H. Ito and T. Nakamura, “Amorphous silicon thin film transistors and application to image sensors,” Journal of Non-Crystalline Solids, Volume 198-200, Part 2, pp. 1087-1092, 1996.
[1.7] L. E. Fennell, M. J. Thompson, H.C. Tuan and R. Weisfield, “Page-Wild a-Si TFT Arrays for Electronic Printing and Copying,” International Display Research Conference (IDRC), pp.167-169, 1988.
[1.8] F. Morin, “Amorphous silicon TFTs and their applications,” Microelectronic Engineering, vol.19, pp.171-178, 1992.
[1.9] P. G. LeComber, W. E. Spear and Ghaith, “Amorphous Silicon Field-Effect Device and Possible Application,” Electronics Letters, vol.15, pp.179-181, 1979.
[1.10] Kinoshita H., Kitahara H., Schleupen K., Colgan E.G., Nunes R., Kodate M., and Takasugi S., “High-resolution AMLCD made with a-Si:H TFTs and an Al gate and IZO structure,” Journal of the Society for Information Display, vol.7, pp.265-267, 1999.
[1.11] Chi-Wen Chen, Ting-Chang Chang, Po-Tsun Li, Hau-Yan Lu, Kao-Cheng Wang, Chen-Shuo Huang, Chia-Chun Ling and Tesung-Yuen Tseng, “High-performance hydrogenated amorphous-Si TFT for AMLCD and AMOLED applications,” IEEE Electron Device Letters, vol.26, pp.731-733, 2005.
[1.12] Corbin Church and Arokia Nathan, “Amorphous-silicon TFT AMOLEDs,”
Information Display, vol.21, pp.22-26, 2005.
[1.13] J.H. Jung, H. Kim, , S.P. Lee, U.C. Sung, J.S. Rhee, C.S. Ko, J.C. Goh, B.R. Choi, J.H. Choi, N.D. Kim and K. Chung, “A 14.1 inch full color AMOLED display with top emission structure and a-Si TFT backplane,” in SID Tech. Dig., pp.1538-1541, 2005.
[1.14] S. Uchikoga and N. Ibaraki, “Low temperature poly-Si TFT-LCD by excimer laser anneal,” Thin Solid Films, vol. 383, pp.19-24, 2001
[1.15] Do-Hyun Choi, Eiichi Sadayuki, Osamu Sugiura and Masakiyo Matsumura, “Lateral growth of poly-Si Film by excimer laser and its thin film transistor applications,” Jpn. J. Appl. Phys. Part1, vol. 33, pp. 70-74, 1994.
[1.16] A. Tanaka, M. Suzuki, R. Asahi, O. Tabata and S. Sugiyama, ”Infrared linear image sensor using a poly-Si pn junction diode array,” Infrared Physics, vol. 33, pp. 229-236, 1992.
[1.17] D. P. Gosain, T. Noguchi, A. Machida and S. Usui, “Excimer laser crystallized poly-Si TFTs and their applications,” Proceedings of The International Society for Optical Engineering, vol. 3975, pp. 1313-1320, 2000.
[1.18] K. Banerjee, S. J. Souri, P. Kapur and K. C. Saraswat, “3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration,” Proceedings of the IEEE, vol. 89, pp. 602-633, 2001.
[1.19] S.D. Brotherton, J.R. Ayres, M.J. Edwards, C.A. Fisher, C. Glaister, J.P. Gowers, D.J. McCulloch and M. Trainor, “Laser crystallised poly-Si TFTs for AMLCDs,” Thin Solid Films, vol. 337, pp. 188-195, 1999.
[1.20] S.D. Brotherton, D.J. McCulloch, J.P. Gowers, J.R. Ayres, C.A. Fisher and F.W. Rohlfing, “Excimer laser crystallisation of poly-Si TFTs for AMLCDs,” Proceedings of Materials Research Society Symposium, vol. 621, pp. Q711-Q712, 2000.
[1.21] Kyoung Moon Lim, KyungEon Lee, Juhn S. Yoo, Jin-Mo Yoon, Myoung Kee Baek, Jae-Sung Yoo, Young-Sik Jung, JoonKyu Park, Seok-Woo Lee, HoChul Kang, Chang-Dong Kim and In-Jae Chung, “A 3.5 in. QVGA poly-Si TFT-LCD with integrated driver including new 6-bit DAC,” Solid-State Electronics, vol. 49, pp. 1107-1111, 2005.
[1.22] C. S. Tan, W. T. Sun, S. H. Lu, C. H. Kuo, S. H. Yeh, I. T. Chang, C. C. Chen, Jargon Lee and C. S. Yang, “A Fully Integrated Poly-Si TFT- LCD Adopting a Novel 6-Bit Source Driver and a Novel DC-DC Converter Circuit,” in SID Tech. Dig., pp. 1456-1459 , 2004.
[1.23] Woo-Jin Nam, Sang-Hoon Jung, Jae-Hoon Lee, Hye-Jin Lee and Min-Koo Han, “A Low-Voltage P-type Poly-Si Integrated Driving Circuits for Active Matrix Display,” in SID Tech. Dig., pp.1046-1049, 2005.
[1.24] K. Abe, M.Shimoda, H. Haga, H. Asada, H. Hayama, K. Iguchi, D. Iga, Y. Iketsu, H. Imura and S. Miyano, ”A poly-Si TFT 6-bit current data driver for active matrix organic light emitting diode displays,” in SID Tech. Dig., pp.279-282, 2002
[1.25] M.Shimoda, K. Abe, H. Haga, H. Asada, H. Hayama, K. Iguchi, D. Iga, H. Imura and S. Miyano, “An integrated poly-Si TFT current data driver with a data-line pre-charge function,” Journal of the Society for Information Display, pp.461-466, 2003.
[1.26] A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte and Robert A. Street, “All jet-printed polymer thin-film transistor active-matrix backplanes,” APPLIED PHYSICS LETTERS , vol. 85, pp.3304-3306, 2004.
[1.27] B. Comiskey, J. D. Albert, H. Yoshizawa and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature, Vol. 394, pp. 253-255, 1998.
[1.28] Liang Wang, Daniel Fine and Ananth Dodabalapur, “Nanoscale chemical sensor based on organic thin-film transistors,” APPLIED PHYSICS LETTERS , vol. 85, pp.6386-6388, 2004.
[1.29] R. M. A. Dawson and M. G. Kane, “Pursuit of active matrix organic light emitting diode displays,” SID Tech. Dig., pp. 372-375 , 2001.
[1.30] C. Reita and S. Fluxman, “Design and operation of poly-Si analogue circuits,” IEE Proc.-Circuits Devices Syst., vol. 141, no. I, pp. 60-64, 1994.
[1.31] Chang-Ho Oh, Motohiro Ozawa and Masakiyo Matsumura, “Novel phase-modulated excimer-laser crystallization method of silicon thin films,” Japanese Journal of Applied Physics, vol. 37, pp. L492-L495, 1998.
[1.32] Aaron M. Marmorstein, Apostolos T. Voutsas and Raj Solanki, “Effect of multiple scans and granular defects on excimer laser annealed polysilicon TFTs,” Solid-State Electronics, pp. 305-313, 1999.
[1.33] Robert S. Sposili and James S. Im, “Sequential lateral solidification of thin silicon films on SiO2,” Appl. Phys. Lett., vol. 69, pp. 2864-2866, 1996.
[1.34] Mark A. Crowder, A. Tolis Voutsas, Steven R. Droes, Masao Moriguchi and Yasuhiro Mitan “Sequential Lateral Solidification Processing for Polycrystalline Si TFTs,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 51, pp. 560-568, 2004.
[1.35] J.S. Im, R.S. Sposili and M.A. Crowder, “Single-crystal Si films for thin-film transistor devices,” Appl. Phys. Lett., vol. 70, pp. 3434-3436, 1997.
[1.36] Alan G. Lewis, David D. Lee and Richard H. Bruce, “Poly silicon TFT Circuit Design and Performance,” IEEE Journal of Solid-State Circuits. vol. 21, no. 12, pp.1833-1842, 1992
[1.37] Tolis Voutsas, Paul Schuele, Bert Crowder, Pooran Joshi, Robert Sposili, Hidayat Kisdarjono, Themis Afentakis and John Hartzell, “Next Generation of Poly-Si TFT Technology: Material Improvements and Novel Device Architectures for System-On-Panel (SOP),” Sharp Technology, no92, pp. 29-34, 2005
[1.38] Hideki Asada, “Low-Power System-on-Glass LCD Technologies,” in SID Tech. Dig., pp. 1434-1437, 2005.
[1.39] Akihiko Imaya, “CG Silicon Technology and its Application,” in AMLCD, pp.1-4, 2003.
[1.40] Toshio Mizuki, Junko Shibata Matsuda, Yoshinobu Nakamura, Junkoh Takagi, and Toyonobu Yoshida, “Large Domains of Continuous Grain Silicon on Glass Substrate for High-Performance TFTs,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 51, no. 2, pp.204-211, 2004.
[1.41] M. Tai, M. Hatano, S. Yamaguchi, T. Noda, Seong-Kee Park, T. Shiba and M. Ohkura, “Performance of poly-Si TFTs fabricated by SELAX,” IEEE Trans. Electro. Dev., vol. 51, pp. 934-937, 2004.
[1.42] M. Hatano, T. Sato, M. Matsumura, Y. Toyota, M. Tai, M. Ohkura and T. Miyazawa, “System on Glass Display with LTPS-TFTs Formed using SELAX Technology,” in Proceedings of International Display Workshops/Asia Display, pp. 953-956, 2005
[1.43] Fujio Okumura, “SOG Technologies in NEC,” in IDMC, pp.311-314, 2005

Chapter 2:

[2.1] Byong-Deok Choi, Heuisung Jang, Oh-Kyong Kwon, Hong-Gyu Kim and Myuny-Jin Soh, “Design of Poly-Si TFT-LCD Panel with Integrated DRIVER Circuits for an HDTV/XGA Projection System,” IEEE Trans. on Consumer Electronics, vol. 46, pp. 95-104, 2000.
[2.2] Shin-Hung Yeh, Wein-Town Sun, Jian-Shen Yu, Chien-Chih Chen, Jargon Lee and Chien-Sheng Yang, “A 2.2-inch QVGA System-on-Glass LCD Using P-Type Low Temperature Poly-Silicon Thin Film Transistors,” in SID Tech. Dig., pp. 352-355, 2005.
[2.3] Y. Nakajima, Y. Kida, M. Murase, Y. Toyoshima and Y. Maki, ”Latest Development of “System-on-Glass” Display with Low Temperature Poly-Si TFT,” in SID Tech. Dig., pp. 864-867, 2004.
[2.4] Shin-Hung Yeh, Wein-Town Sun, Chien-Chih Chen and Chien-Sheng Yang, “A Novel Integrated DC-DC Converter Using LTPS TFT,” in SID Tech. Dig., pp. 1442-1445, 2005.
[2.5] Hye-Jin Lee, Woo-Jin Nam, Jae-Hoon Lee, Sang-Myeon Han and Min-Koo Han, “Highly Efficient DC-DC Converter Employing P-type Poly-Si TFTs for Active Matrix Displays,” in IDW/AD, pp. 1231-1232, 2005.
[2.6] Y. Aoki, T. lizuka, S. Sagi, M. Karube, T. Tsunashima, S. Ishizawa, K. Ando, H. Sakurai, T. Ejiri, T. Nakazono, M. Kobayashi, H. Sato, N. Ibaraki, M. Sasaki and N. Harada, “A 10.4-in. XGA Low-Temperature Poly-Si TFT-LCD for Mobile PC Applications,” in SID Tech. Dig., pp. 196-199, 1999.
[2.7] Woo-Jin Nam, Sang-Hoon Jung, Jae-Hoon Lee, Hye-Jin Lee and Min-Koo Han, “A Low-Voltage P-type Poly-Si Integrated Driving Circuits for Active Matrix Display,” in SID Tech. Dig., pp. 1046-1049, 2005.
[2.9] Yoo-Chang Sung, Sun-Man So and Jong-Kee Kim, “10bit Source Driver with Resistor-Resistor-String Digital to Analog Converter,” in SID Tech. Dig., pp. 1099-1101, 2005.
[2.10] Yoshihiro Nonaka, Hiroshi Haga, Hiroshi, Tsuchi, Youichi Kitagishi, Tadahiro Matsuzaki, Mitsuhiro Sugimoto, Hiroshi Hayama and Hideki Asada, “ A Low-Power SOG LCD with Integrated DACs and a DC-DC Converter for Mobile Applications,” in SID Tech. Dig., pp. 1148-1451, 2004.
[2.11] Hiroshi Haga, Hiroshi Tsuchi, Katsumi Abe, Naoyasu Ikeda, Hideki Asada, Kunihiro Shiota, Naruaki Takada Hiroshi Hayama, “A Parallel Digital-Data-Driver Architecture for Low-Power Poly-Si TFT-LCDs, ” in SID Tech. Dig., pp. 690-693, 2002.
[2.12] Sharp Corporation, United States Patent US 6,522,323 “Ultra-Low-Voltage Input Signal Level Shifter Circuit” Feb. 18, 2003.
[2.13] Jae-Geun Kim, Ju Young Jeong, and Jae Heun Hur, “Improvement of LTPS TFT Digital Circuit Performance for System-On-Panel Application”, in IDW/AD, pp. 443-446, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top