|
ANDERSEN, P. K., BORGAN, O., GILL, R. D. & KEIDING, N. (1993). Statistical Models Based on Counting Processes, New York: Springer-Verlag. CHAIEB, L. RIVEST, L.-P. & ABDOUS, B. (2006). Estimating survival under a dependent truncation. Biometrika, 93, 655-69. CLAYTON, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141-51. CLAYTON, D. G. & CUZICK, J. (1985). Multivariate generalizations of the proportional hazards model (with discussion). Journal of the Royal Statistical Society: Series A, 148, 82-117. CHEN, C.-H., TSAI, W.-Y. and CHAO, W.-H. (1996). “The product-moment correlation coefficient and linear regression for truncated data.”, Journal of the American Statistical Association, 91, 1181-1186. CUZICK, J. (1982). Rank tests for association with right censored data. Biometrika, 69, 351-364. CUZICK, J. (1985). Asymptotic properties of censored linear rank tests. The Annals of Statistics, 13, 133-141. DABROSKA, D. M. (1986). Rank tests for independence for bivariate censored data. The Annals of Statistics, 14, 250-264. DAY, R., BRYANT, J. & LEFKOPOLOU, M. (1997). Adaptation of bivariate frailty models for prediction, with application to biological markers as prognostic indicators. Biometrika 84, 45-56. EFRON, B. F. (1982). The Jackknife , the Bootstrap, and Other Resampling Plans, Philadelphia: Society for Industrial and Applied Mathematics. FINE, J. P., JIANG, H. & CHAPPELL, R. (2001). On semi-competing risks data. Biometrika 88, 907-19. GENEST, C. (1987). Frank’s family of bivariate distributions. Biometrika 74, 549-55. GENEST, C., GHOUDI, K. & RIVEST, L.-P. (1995). A semi-parametric estimation procedure for dependence parameters in multivariate families of distributions. Biometrika 82, 543-52. GENEST, C. & MACKAY, R. J. (1986). The joy of Copulas: Bivariate distributions with uniform marginals. The American Statistician, 40, 280-283. HE, S. and YANG, G. L. (1998). Estimation of the truncation probability in the random truncation model. Annals of Statistics. 26, 1011-27. HSU, L. and PRENTICE, R. L. (1996). A generalisation of the Mantel-Haenszel test to bivariate failure time data. Biometrika, 83, 905-911. KALBFLEISCH, J. D. & LAWLESS, J. F. (1989). Inference based on retrospective ascertainment: an analysis of the data on transfusion-related AIDS. Journal of the American Statistical Association, 84, 360-72. KLEIN, J. P. & MOESCHBERGER, M. L. (2003) Survival Analysis: Techniques for Censored and Truncated Data. New York: Springer KOSOROK, M. R. and LIN, C. (1999). The versatility of functional-indexed weighted log-rank statistics. Journal of the American Statistical Association, 94 320-332. LAI, T. L. & YING, Z. (1991). Estimating a distribution function with truncated and censored data. Annals of Statistics. 19, 417-42. LYNDEN-BELL, D. (1971). A method of allowing for known observational selection in small samples applied to 3RC quasars. Mon. Nat. R. Astr. Soc. 155, 95-118. LAGAKOS, S. W., BARRAJ, L. M. & DE GRUTTOLA, V. (1998). Non-parametric analysis of truncated survival data, with application to AIDS. Biometrika 75, 515-23. MARTIN, E. C. & BETENSKY, R. A. (2005). Testing quasi-independence of failure and truncation via Conditional Kendall’s Tau. Journal of the American Statistical Association, 100, 484-92. NELSEN, R. B. (1999). An Introduction to copulas. New York: Springer-Verlag. OAKES, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statistical Society: Series B, 44, 414-22. OAKES, D. (1986). Semi-parametric inference in a model for association in bivariate survival data. Biometrika, 73, 353-61. OAKES, D. (1989). Bivariate survival models induced by frailties. Journal of the American Statistical Association , 84, 487-93. RIVEST, L.-P. & WELLS, M. T. (2001). A martingale approach to the copula-graphic estimator for the survival function under dependent censoring. J. of Mult. Annal. 79, 138-55. SHAO, J. (1993). Differentiability of statistical functionals and consistency of the jackknife. The Annals of Statistics, 21, 61-75. SHIH, J. H. & LOUIS, T. A. (1995). Inference on the association parameter in copula models for bivariate survival data. Biometrics, 51, 1384-99. SHIH, J. H. & LOUIS, T. A. (1996). Tests of independence for bivariate survival Data. Biometrics, 52, 1440-1449. STUTE, W. (1993). Almost sure representation of the product-limit estimator for truncated data. The Annals of Statistics, 21, 146-56. TARONE, R. E. (1981). On the distribution of the maximum of the log-rank statistics and the modified Wilcoxon statistics. Biometrics, 37 79-85. TSAI, W. -Y. (1990). Testing the association of independence of truncation time and failure time. Biometrika 77, 169-177. VAN DER VAART. A. W. (1998). Asymptotic statistics. Cambridge Series in Statistics and Probabilistic Mathematics. Cambridge: Cambridge University Press. WANG, M. C., JEWELL, N. P. & TSAI, W. Y. (1986). Asymptotic properties of the product-limit estimate and right censored data. The Annals of Statistics, 13, 1597-605. WANG, W. & DING, A. A. (2000). On assessing the association for bivariate current status data. Biomertika 87, 897-93. WANG, W. (2003). Estimating the association parameter for copula models under dependent censoring. Journal of the Royal Statistical Society: Series B, 65, 257-73. WOODROOFE, M. (1985). Estimating a distribution function with truncated data. The Annals of Statistics, 13, 163-77. ZHENG, M. & KLEIN, J. (1995). Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika 82, 127-38.
|