跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 22:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江村剛志
研究生(外文):Takeshi Emura
論文名稱:相依截切資料的統計推論
論文名稱(外文):Statistical Inference for Dependent Truncation Data
指導教授:王維菁王維菁引用關係
指導教授(外文):Weijing Wang
學位類別:博士
校院名稱:國立交通大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:94
中文關鍵詞:semi-survivalArchimedean-copulaconditional likelihoodtruncationlog-rank statisitcsscore test
外文關鍵詞:semi-survivalArchimedean-copulaconditional likelihoodtruncationlog-rank statisitcsscore test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In this dissertation, we investigate the dependent relationship between two failure time variables which have a truncation relationship. Chaieb et al. (2006) considered semi-parametric framework under a “semi-survival” Archimedean-copula assumption and proposed estimating functions to estimate the association parameter, the truncation probability and the marginal functions.
In the first project, we adopt the same model assumption but propose different estimating methods. In particular we extend Clayton’s conditional likelihood approach (1978) to dependent truncation data for estimation of the association parameter. For marginal estimation, we propose a recursive algorithm and derive explicit formula to obtain the solution. The functional delta method is applied to establish large sample properties which can handle more general estimating functions than the U-statistic approach. Simulations are performed and the proposed methods are applied to the transfusion-related AIDS data for illustrative purposes.
Quasi-independence has been assumed by many inference methods for analyzing truncation data. By forming a series of tables, we also propose a weighted log-rank statisitcs for testing this assumption, which is our second project. Power improvement is possible by choosing an appropriate weight function. Here, we derive score tests when the dependence structure under the alternative hypothesis is specified semiparametrically. Asymptotic analysis and simulations are used to justify our proposed methods.
In this dissertation, we investigate the dependent relationship between two failure time variables which have a truncation relationship. Chaieb et al. (2006) considered semi-parametric framework under a “semi-survival” Archimedean-copula assumption and proposed estimating functions to estimate the association parameter, the truncation probability and the marginal functions.
In the first project, we adopt the same model assumption but propose different estimating methods. In particular we extend Clayton’s conditional likelihood approach (1978) to dependent truncation data for estimation of the association parameter. For marginal estimation, we propose a recursive algorithm and derive explicit formula to obtain the solution. The functional delta method is applied to establish large sample properties which can handle more general estimating functions than the U-statistic approach. Simulations are performed and the proposed methods are applied to the transfusion-related AIDS data for illustrative purposes.
Quasi-independence has been assumed by many inference methods for analyzing truncation data. By forming a series of tables, we also propose a weighted log-rank statisitcs for testing this assumption, which is our second project. Power improvement is possible by choosing an appropriate weight function. Here, we derive score tests when the dependence structure under the alternative hypothesis is specified semiparametrically. Asymptotic analysis and simulations are used to justify our proposed methods.
Chapter 1 Introduction 1
1.1 Motivation and Background 1
1.2 Overview of the Proposal 4
Chapter 2 Literature Review 6
2.1 Association Measures and Copula Models 6
2.2 Semi-parametric Inference for Survival-copula Models 8
2.3 Association Measures and Copula Models Suitable for Truncation Data 9
2.4 Statistical Inference for Truncated Data under Quasi-Independence 11
2.5 Statistical Inference for Dependent Truncated Data 13
Chapter 3 The Proposed Approach for Semi-parametric Inference 16
3.1 Estimation of Association 16
3.1.1 Conditional Likelihood Approach 16
3.1.2 Estimation based on Two-by-two Tables 17
3.1.3 Construction based on concordance indicators 18
3.1.4 Equivalent condition for different approaches 19
3.2 Estimation of marginal functions and truncation probability 20
3.2.1 The approach of Chaieb et al. (2006) 20
3.2.2. Recursive Solution to the Moment Constraints 21
3.3 Asymptotic Analysis 23
3.3.1 General Results for Asymptotic Properties 23
3.3.2. Asymptotic Behavior under Independence 24
3.4 Extension and Modification 30
3.4.1 Extension under right censoring 30
3.4.2 Modification for small risk sets 32
3.5 Numerical analysis 33
3.5.1 Simulation studies 33
3.5.2 Data analysis 37
3.6. Conclusion 39
Appendices : Project 1 40
Appendix 3.A: Asymptotic Analysis 40
Appendix 3.B: Equivalence of Different Estimating Functions 47
Appendix 3.C: Examples of AC Models 48
Chapter 4 Testing quasi-independence 51
4.1 The Proposed Test Statistics 52
4.1.1 Construction based on table 52
4.1.2 Relationship with Tsai’s test 54
4.2 Conditional Score Test 55
4.2.1 Likelihood Construction 55
4.2.2 Semi-survival AC models 57
4.3 Asymptotic analysis 60
4.3.1 Asymptotic normality 60
4.3.2 Variance estimation: Empirical vs. Jackknife 62
4.4 Modification for Right Censoring 63
4.4.1 The Weighted Log-rank Statistics under Censoring 63
4.4.2 The Conditional Score test under Censoring 65
4.4.3 Asymptotic Analysis under Censoring 65
4.5 Numerical Studies 67
4.5.1 Comparing Two Variance Estimators 67
4.5.2 Size of the Weighted Log-rank Test 68
4.5.3 Power of the Tests 70
4.6 Data Analysis 76
4.7 Conclusion 77
Appendices : Project 2 79
Appendix 4.A: Asymptotic Analysis 79
Appendix 4.B: Proof of Rquivalence Formula 87
Chapter 5 Future Work 90
References 91
ANDERSEN, P. K., BORGAN, O., GILL, R. D. & KEIDING, N. (1993). Statistical Models Based on Counting Processes, New York: Springer-Verlag.
CHAIEB, L. RIVEST, L.-P. & ABDOUS, B. (2006). Estimating survival under a dependent truncation. Biometrika, 93, 655-69.
CLAYTON, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141-51.
CLAYTON, D. G. & CUZICK, J. (1985). Multivariate generalizations of the proportional hazards model (with discussion). Journal of the Royal Statistical Society: Series A, 148, 82-117.
CHEN, C.-H., TSAI, W.-Y. and CHAO, W.-H. (1996). “The product-moment correlation coefficient and linear regression for truncated data.”, Journal of the American Statistical Association, 91, 1181-1186.
CUZICK, J. (1982). Rank tests for association with right censored data. Biometrika, 69, 351-364.
CUZICK, J. (1985). Asymptotic properties of censored linear rank tests. The Annals of Statistics, 13, 133-141.
DABROSKA, D. M. (1986). Rank tests for independence for bivariate censored data. The Annals of Statistics, 14, 250-264.
DAY, R., BRYANT, J. & LEFKOPOLOU, M. (1997). Adaptation of bivariate frailty models for prediction, with application to biological markers as prognostic indicators. Biometrika 84, 45-56.
EFRON, B. F. (1982). The Jackknife , the Bootstrap, and Other Resampling Plans, Philadelphia: Society for Industrial and Applied Mathematics.
FINE, J. P., JIANG, H. & CHAPPELL, R. (2001). On semi-competing risks data. Biometrika 88, 907-19.
GENEST, C. (1987). Frank’s family of bivariate distributions. Biometrika 74, 549-55.
GENEST, C., GHOUDI, K. & RIVEST, L.-P. (1995). A semi-parametric estimation procedure for dependence parameters in multivariate families of distributions. Biometrika 82, 543-52.
GENEST, C. & MACKAY, R. J. (1986). The joy of Copulas: Bivariate distributions with uniform marginals. The American Statistician, 40, 280-283.
HE, S. and YANG, G. L. (1998). Estimation of the truncation probability in the random truncation model. Annals of Statistics. 26, 1011-27.
HSU, L. and PRENTICE, R. L. (1996). A generalisation of the Mantel-Haenszel test to bivariate failure time data. Biometrika, 83, 905-911.
KALBFLEISCH, J. D. & LAWLESS, J. F. (1989). Inference based on retrospective ascertainment: an analysis of the data on transfusion-related AIDS. Journal of the American Statistical Association, 84, 360-72.
KLEIN, J. P. & MOESCHBERGER, M. L. (2003) Survival Analysis: Techniques for Censored and Truncated Data. New York: Springer
KOSOROK, M. R. and LIN, C. (1999). The versatility of functional-indexed weighted log-rank statistics. Journal of the American Statistical Association, 94 320-332.
LAI, T. L. & YING, Z. (1991). Estimating a distribution function with truncated and censored data. Annals of Statistics. 19, 417-42.
LYNDEN-BELL, D. (1971). A method of allowing for known observational selection in small samples applied to 3RC quasars. Mon. Nat. R. Astr. Soc. 155, 95-118.
LAGAKOS, S. W., BARRAJ, L. M. & DE GRUTTOLA, V. (1998). Non-parametric analysis of truncated survival data, with application to AIDS. Biometrika 75, 515-23.
MARTIN, E. C. & BETENSKY, R. A. (2005). Testing quasi-independence of failure and truncation via Conditional Kendall’s Tau. Journal of the American Statistical Association, 100, 484-92.
NELSEN, R. B. (1999). An Introduction to copulas. New York: Springer-Verlag.
OAKES, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statistical Society: Series B, 44, 414-22.
OAKES, D. (1986). Semi-parametric inference in a model for association in bivariate survival data. Biometrika, 73, 353-61.
OAKES, D. (1989). Bivariate survival models induced by frailties. Journal of the American Statistical Association , 84, 487-93.
RIVEST, L.-P. & WELLS, M. T. (2001). A martingale approach to the copula-graphic estimator for the survival function under dependent censoring. J. of Mult. Annal. 79, 138-55.
SHAO, J. (1993). Differentiability of statistical functionals and consistency of the jackknife. The Annals of Statistics, 21, 61-75.
SHIH, J. H. & LOUIS, T. A. (1995). Inference on the association parameter in copula models for bivariate survival data. Biometrics, 51, 1384-99.
SHIH, J. H. & LOUIS, T. A. (1996). Tests of independence for bivariate survival Data.
Biometrics, 52, 1440-1449.
STUTE, W. (1993). Almost sure representation of the product-limit estimator for truncated data. The Annals of Statistics, 21, 146-56.
TARONE, R. E. (1981). On the distribution of the maximum of the log-rank statistics and the modified Wilcoxon statistics. Biometrics, 37 79-85.
TSAI, W. -Y. (1990). Testing the association of independence of truncation time and
failure time. Biometrika 77, 169-177.
VAN DER VAART. A. W. (1998). Asymptotic statistics. Cambridge Series in Statistics and Probabilistic Mathematics. Cambridge: Cambridge University Press.
WANG, M. C., JEWELL, N. P. & TSAI, W. Y. (1986). Asymptotic properties of the product-limit estimate and right censored data. The Annals of Statistics, 13, 1597-605.
WANG, W. & DING, A. A. (2000). On assessing the association for bivariate current status data. Biomertika 87, 897-93.
WANG, W. (2003). Estimating the association parameter for copula models under dependent censoring. Journal of the Royal Statistical Society: Series B, 65, 257-73.
WOODROOFE, M. (1985). Estimating a distribution function with truncated data. The Annals of Statistics, 13, 163-77.
ZHENG, M. & KLEIN, J. (1995). Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika 82, 127-38.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top