跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳明崇
研究生(外文):Ming-Tsung Chen
論文名稱:WDM網路中多點傳輸與波長指派問題研究
論文名稱(外文):Multicast Routing and Wavelength Assignment in WDM Networks
指導教授:曾憲雄曾憲雄引用關係
指導教授(外文):Shian-Shyong Tseng
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:159
中文關鍵詞:多重傳輸路由螞蟻演算法遺傳演算法整數線規劃分光能力傳輸延遲限制多點傳輸需求分頻多工光纖網路
外文關鍵詞:mlticast routingant colony optimizationgenetic algorithminteger linear programlight splitting capacitydelay boundmulticast requestWDM network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:415
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
在可見的未來,WDM 網路將被用來建置主幹網路,因此,建置多點傳輸功能,以提供多變的網路應用需求是必要的。在本篇論文中,我們擴展路由與波長指派問題(routing and wavelength assignment problem, RWA)的研究,重新定義在WDM網路具傳輸延遲限制的多點傳輸與波長指派的新問題,簡稱MRWAP-DC。在此問題中,多點傳輸需求具傳輸延遲限制且網路節點具不同的分光能力或波長轉換能力,多點傳輸代價定義為傳輸代價與所需光波長數的線性加權,其目的為對每一個需求尋找一個光樹狀傳輸路由集合(light-forest),在最小的多點傳輸代價下,使得這些多點傳輸需求可以在傳輸延遲限制內,成功的將資料傳輸至所有的目的節點。在本篇論文中,MRWAP-DC將被完整定義與描述,提出一個整數線性規劃(ILP)方法,使得MRWAP-DC問題可被轉換成條件定義最佳化問題,利用CPLEX 線性規劃工具以找出問題的最佳解。雖然ILP方法可用來找出滿足條件的最佳解,但只適合解決小規模的網路路由與波長指派問題,因此,我們提出兩個啟發式演算法(meta-heuristic):螞蟻演算法(Ant Colony Optimization)與基因遺傳演算法(Genetic Algorithm)以解決兩個簡化的問題-URWAP-DC-SR和MRP-DC-WWC-SR。此外,針對動態網路路由與波長指派問題,執行時間為重要的考慮因素,因此,我們提出兩個直覺演算法:k-最短路徑近似演算法(Near-k-Shortest-Path-based Heuristic,NKSPH)與反覆尋解模型(Iterative Solution Model,ISM),以處理大規模網路的動態路由與波長指派問題。由實驗的數據結果,這兩個直覺演算法可以找到接近最佳解的近似解。
在本篇論文中,不僅利用ILP方法來定義MRWAP-DC問題,同時提出四種不同解決這類簡化問題的方法,透過利用ILP方法所得到的最佳解比較,這些方法可以找到接近最佳解的近似解,但花費的執行時間卻遠比ILP方法少。
Because optical wavelength division multiplexing (WDM) networks are expected to be realized for building up backbone in the near future, multicasting in WDM networks needs to be addressed for various network applications. This dissertation studies an extended routing and wavelength assignment (RWA) problem called multicast routing and wavelength assignment problem with delay constraint (MRWAP-DC) that incorporates delay constraints in WDM networks having heterogeneous light splitting capabilities. The objective is to find a light-forest for a multicast whose multicast cost, defined as a weighted combination of communication cost and wavelength consumption, is minimal. An integer linear programming (ILP) formulation is proposed to formulate and solve the special problem of MRWAP-DC, MRWAP-DC-WWC. Experimental results show that using CPLEX to solve the ILP formulation can optimally deal with small-scale networks. Therefore, we develop two heuristics, Near-k-Shortest-Path-based Heuristic (NKSPH) and Iterative Solution Model (ISM), to solve the problem in large-scale networks. Numerical results indicate that the proposed heuristic algorithms can produce approximate solutions of good quality in an acceptable time. This dissertation also investigates two special problems, URWAP-DC-SR and MRP-DC-WWC-SR by two meta-heuristics ant colony optimization (ACO) and genetic algorithm (GA). We compare the performance of the proposed algorithms with the ILP formulations. Solutions found by these meta-heuristics are approximately equal to those found by the ILP formulations, and the elapsed execution times are far less than that demanded by the ILP formulations.
List of Figures ................................................................................................................................ iv
List of Tables .................................................................................................................................. vi
Chapter 1 Introduction ....................................................................................................................1
1.1 Motivation ..............................................................................................................................1
1.2 Contribution ...........................................................................................................................3
1.3 Reader’s Guide.......................................................................................................................4
Chapter 2 Overview of Optical Networks......................................................................................8
2.1 Characteristics of Optical Networks ......................................................................................8
2.2 Optical Multiplexing Transmission System .........................................................................11
2.3 Optical Equipment................................................................................................................13
2.4 Evolution of Optical Networks ............................................................................................16
2.5 Multicast..............................................................................................................................19
Chapter 3 Preliminaries of Routing and Wavelength Assignment Problem.............................23
3.1 Routing and Wavelength Assignment Problem (RWAP).....................................................23
3.2 Unicast RWAP (URWAP)....................................................................................................25
3.3 Multicast RWAP (MRWAP) ................................................................................................27
3.4 RWAP Problem Model.........................................................................................................29
Chapter 4 Multicast Routing and Wavelength Assignment Problem with Delay
Constraints ...............................................................................................................................31
4.1 Formulation of MRWAP-DC...............................................................................................32
4.2 Studied Problems and Methods ...........................................................................................42
4.3 Simulation Scheme ..............................................................................................................44
Chapter 5 ILP Formation for MRWAP-DC-WWC ....................................................................46
5.1 Formulation ..........................................................................................................................47
5.2 Proof of the ILP Formulation ...............................................................................................51
5.3 Experiments.........................................................................................................................55
5.3.1 Comparisons of Different Wavelength Consumption Ratios ....................................56
5.3.2 Performance Assessment of ILP ..............................................................................57
5.4 Conclusion...........................................................................................................................58
Chapter 6 Ant Colony Optimization (ACO) for URWAP-DC-SR.............................................61
-ii-
6.1 Concept of the ACO.............................................................................................................64
6.2 Initialization in the ACO......................................................................................................66
6.3 State Transition Rule ............................................................................................................67
6.4 Pheromone Updating Rule ...................................................................................................69
6.5 Stopping Criterion ................................................................................................................71
6.6 Computational Experiments.................................................................................................71
6.6.1 Introduction of Transmission Delays to the ILP Formulation .................................72
6.6.2 Comparisons between the ACO and the ILP Formulation.......................................72
6.6.3 Comparisons of Iterations........................................................................................75
6.7 Conclusion...........................................................................................................................76
Chapter 7 Genetic Algorithm (GA) for MRP-DC-WWC-SR.....................................................89
7.1 Problem Formulation............................................................................................................90
7.2 Concept of GA .....................................................................................................................98
7.2.1 Selection / Reproduction..........................................................................................99
7.2.2 Crossover ...............................................................................................................100
7.2.3 Mutation.................................................................................................................101
7.3 GA for MRP-DC-WWC-SR..............................................................................................101
7.3.1 Chromosomal Encoding Scheme...........................................................................101
7.3.2 Crossover Operator ................................................................................................104
7.3.3 Mutation.................................................................................................................105
7.3.4 Fitness Function Definition ...................................................................................108
7.3.5 Chromosome Repair ..............................................................................................109
7.3.6 Replacement Strategy ............................................................................................110
7.3.7 Termination Rules..................................................................................................110
7.4 Experiments .......................................................................................................................111
7.4.1 Performance Assessment of the GA model............................................................112
7.4.2 Comparisons between GA, 3PM, and ILP.............................................................115
7.4.3 Comparisons among Four Mutation Heuristics .....................................................115
7.5 Conclusion.........................................................................................................................125
Chapter 8 Heuristics for MRWAP-DC-WWC-SR ....................................................................126
8.1 NKSPH for MRWAP-DC-WWC-SR ................................................................................127
8.2 ISM for MRWAP-DC.........................................................................................................131
8.1.1 Selecting Wavelength Procedure (SWP)................................................................131
8.1.2 Finding Assigned Light-Tree Procedure (FALP)...................................................133
8.3. Experiments......................................................................................................................138
8.3.1 Comparisons for Different Values of k in NKSPH ................................................138
8.3.2 Comparisons among ILP, NKSPH, and ISM.........................................................139
8.3.3 Comparisons between MaxDepth and MaxDest.....................................................140
-iii-
8.3.4 Comparisons between MaxE and MinR ................................................................142
8.4. Conclusion........................................................................................................................143
Chapter 9 Conclusion and Future Work....................................................................................147
References ....................................................................................................................................151
[1]. R. C. Bray, D.M. Baney, Optical networks: backbones for universal connectivity, Hewlett Packard Company, 1997.
[2]. B. Mukherjee, Optical Communication Networks, McGraw-Hill, 1997.
[3]. C. Siva Ram Murthy and M. Gurusamy, WDM optical networks, Prentice-Hall, 2002.
[4]. T.A. Birks, R.P. Kenny, K.P. Oakley, and C.V. Cryan, Elimination of water peak in optical fibre taper components, Electronics Letters, Vol 26, Issue 21, Oct. 1990, pp. 1761-1762.
[5]. T. Dennis, and P.A. Williams, Tech. Digest, Chromatic dispersion measurement error caused by source amplified spontaneous emission, IEEE Photonic Technology Letters, Vol. 16, No. 11, Nov. 2004, pp. 2532-2534.
[6]. R. Pickholtz, D. Schilling, and L. Milstein, Theory of spread spectrum communications – A tutorial, IEEE Transactions on Communications, Vol. COM-30, No.5, 1982, pp. 855–884.
[7]. M. Sust, Code division multiple access for commercial communications, Review of Radio Science, 1992–1994, pp. 155–179.
[8]. B. Ramamurthy and B. Mukherjee, Wavelength conversion in WDM networking, IEEE Journal of Selected Areas in Communications, Vol. 16, Sep. 1998, pp. 1061–1073.
[9]. Y. Ueno, S. Nakamura, K. Tajima, S. Kitamura, 3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength Converter (DISC), IEEE Photonics Technology Letters, Vol. 10, No. 3, Mar. 1998, pp. 346-348.
[10]. J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, C. R. Giles, All-optical wavelength conversion using a pulse reformatting optical filter, Journal of Lightwave Technology, Vol. 22, No. 1, Jan. 2004, pp. 186-192.
[11]. K. Bala, T. E. Stern, D. Simchi-Levi, and K. Bala, Routing in a linear lightwave network, IEEE/ACM Transactions on Networking, Vol. 3. No. 4. Aug. 1995, pp. 459-469.
[12]. A. M. Hamad and A. E. Kamal, A Survey of multicasting protocols for broadcast-and-select single-hop networks, IEEE Network, July/August 2002, pp. 36-48.
[13]. R. Wittmann and M. Zitterbart, Multicast communication: protocols, programming, and applications. San Francisco, CA: Morgan Kaufman, 2000.
[14]. B. D. Theelen, J. P. M. Voeten, P. H. A. van der Putten, and P. M. J. Stevens, Concurrent Support of Higher-Layer protocols over WDM, Photonic Network Communications, 4:1, 2002, pp. 47-62.
[15]. K. Birman and T. Joseph, Reliable communication in the presence of failures, ACM Trans. Comput. Syst., Vol. 5, No. 1, Feb. 1987, pp. 47–76.
[16]. K. Marzullo and F. Schmuck, Supplying high availability with a standard network file system, Proc., 8th Distributed Computing Systems, 1988, pp. 447–453.
[17]. D. J. Farber, J. Feldman, F. R. Heinrich, M. D. Hopwood, K. C. Larson, D. C. Loomis, and L. A. Rowe, The distributed computing system, Proc., IEEE COMPCON, 1973, pp. 31–34.
[18]. D. Cheriton and W. Zwaenepoel, Distributed process groups in the V-kernel, ACM Trans. Comput. Syst., Vol. 3, No. 2, May 1985, pp. 77–107.
[19]. E. J. Berglund and D. Cheriton, Amaze: A multiplayer computer game, IEEE Software, Vol. 2, May 1985, pp. 30–39.
[20]. E. C. Cooper, Circus: A replicated procedure call facility, Proc., 4th Symp. Reliability in Distributed Software and Database Systems, Silver Spring, MD, Oct. 1984, pp. 11–24.
[21]. R. K. Pankaj, Wavelength requirements for multicasting in all-optical networks, IEEE/ACM Trans. Networking, Vol. 7, Jun. 1999, pp. 414–424.
[22]. C. Qiao, M. Jeong, A. Guha, X. Zhang, and J. Wei, WDM multicasting in IP over WDM networks, Proc., IEEE Int. Conf. on Network Protocols (ICNP), 1999.
[23]. T. Pusateri, DVMRP version 3, IETF Internet draft, draft-ietf-idmrdvmrp-v3-07, obsoletes RFC 1075, Aug. 1998.
[24]. H. Eriksson, MBONE: The multicast backbone, Communications of the ACM, Aug. 1994, pp. 54–60.
[25]. S. Paul, K.K. Sabnani, Reliable Multicast Transport Protocol (RMTP), IEEE Journal of Selected Areas in Communications, Special Issue on Network Support for Multipoint Communication, Vol.15, No.3, Apr 1997, pp. 407-421.
[26]. K. K. Sabnani, Error and flow control 0erformance of a high-speed protocol, IEEE Transactions on Communications, May 1993, pp. 707-720.
[27]. T. Ballardie, P. Francis and J. Crowcroft, Core Based Trees (CBT): an architecture for scalable inter-domain multicast routing, Proc., ACM SIGCOMM ’93, Sep. 1993.
[28]. Roca Vincent, Costa Luis, Vida Rolland, Dracinschi Anca, and Fdida Serge, A survey of multicast technologies, Technical Report RP-LIP6-2000-09-05, Universit Pierre et Marie Curie, September 2000.
[29]. N. F. Mir, A Survey of data multicast techniques, architectures, and algorithms, IEEE Communications, Sep. 2001, pp. 164-170.
[30]. K. Bharath-Kumar and J. M. Jaffe, Routing to multiple destinations in computer networks, IEEE Transactions on Communications, Vol. COM-31, Mar. 1983, pp. 343–351.
[31]. X. Jia, A distributed algorithm of delay-bounded multicast routing for multimedia applications in wide area networks, IEEE/ACM Trans. Networking, Vol. 6, Dec. 1998, pp. 828–837.
[32]. S. Khuller, B. Raghavachari, and N. Young, Balancing minimum spanning trees and shortest-path trees, Algorithmica, Vol. 14, No. 4, 1995, pp. 305–321.
[33]. V. P. Kompella, J. C. Pasquale, and G. C. Polyaos, Optimal multicast routing with quality of service constraints, Journal of Network and Systems Management, Vol. 4, No. 2, 1996, pp. 107–131.
[34]. W. D. Zhong, J. P. R. Lacey, R. S. Tucker, Wavelength cross-connect for optical transport networks, Journal of Lightwave Technology, Vol. 14, 1996, pp. 1613-1620.
[35]. I. Chlamtac, A. Ganz, and G. Karmi, Lightpath communications: Approach to high bandwidth optical WANs, IEEE Transactions on Communication, Vol. 40, 1992, pp.1171-1182.
[36]. R. Ramaswami and K. Sivarajan, Routing and wavelength assignment in all-optical networks”, IEEE/ACM Transactions on Networking, Vol. 3, Jun. 1995, pp. 489-500.
[37]. M. Shiva Kumar, P. Sreenivasa Kumar, Static lightpath establishment in WDM network — New ILP formulation and heuristic algorithms, Computer Communication, 25, 2002, pp. 109-114.
[38]. A. E. Ozdaglar, D. P. Bertsekas, Routing and wavelength assignment in optical networks, IEEE/ACM Transactions on Networking, Vol. 11, No. 2, Apr. 2003, pp. 259-273.
[39]. H. Zang, J. Jue, and B. Mukherjee, A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks, Optical Networks Magazine, Vol. 1, No. 1, Jan. 2000, pp. 47-60.
[40]. M. Kovacevic and A. Acampora, Benefits of Wavelength Translation in All-Optical Clear Channel Networks, IEEE Journal of Selected Areas in Communication, vol. 14, no. 5, 1996, pp. 868-880.
[41]. J. Iness and B. Mukherjee, "Sparse wavelength conversion in wavelength-routed WDM networks", Photonic Network Communications Journal, Vol. 1, No. 3, Nov. 1999, pp. 183-205.
[42]. J. Iness, Efficient use of optical components in WDM based optical networks, Ph.D. Dissertation, University of California, Davis, Nov, 1997.
[43]. S. Subramaniam, M, Azizoglu, and A. K. Somani, All optical networks with Sparse wavelength conversion, IEEE/ACM Transactions on Networking, Vol. 4, No. 4, Aug 1996, pp. 544-557.
[44]. A.S. Arora, S. Subramaniam, Converter placement in wavelength-routing mesh topologies, in Proc. of ICC, Jun. 2000, pp. 1282-1288.
[45]. M. El Houmaidi and M. A. Bassiouni, Dominating set algorithms for sparse placement of full and limited wavelength converters in WDM optical networks, Journal of Optical networking, Vol. 2, No. 6, Jun. 2003, pp. 162-177.
[46]. Q. D. Ho, M. S. Lee, and Converter-Aware, Wavelength assignment in WDM networks with limited-range conversion capability, IEICE Transactions on Communications, Vol. E89–B, No.2 Feb. 2006, pp. 436-445.
[47]. S. Yoshima, K. Onohara, N. Wada, F. Kubota, and K.I. Kitayama, Multicast-capable optical code label switching and its experimental demonstration, Journal of Lightwave Technology, Vol. 24, No. 2, Feb. 2006, pp. 713-722.
[48]. K. C. Lee and V. O. K. Li, A Wavelength-Convertible Optical Network, IEEE/OSA Journal of Lightwave Technology, Vol. 11, No. 5-6, May-Jun. 1993, pp. 962-970.
[49]. J. Yates, J. Lacey, D. Everitt, and M. Summerfield, Limited range wavelength translation in all optical networks, Proc., IEEE INFOCOM’96, San Francisco, CA, Vol. 3, Mar. 1996, pp.954-961.
[50]. V. T. Lei, X. Jiang, S. H. Ngo, and S. Horiguchi, Dynamic RWA based on the combination of mobile agents technique and genetic algorithms in WDM Networks with Sparse wavelength conversion, IEICE Transactions on Information and Systems, E88-D/9, Sep. 2005, pp. 2067-2078.
[51]. M. Ali and J. Deogun, Power-efficient design of multicast wavelength-routed networks, IEEE Journal of Selected Areas in Communications, Vol. 18, Oct. 2000, pp. 1852–1862.
[52]. W. Liang and H. Shen, Multicasting and broadcasting in large WDM networks, Proc., 12th, International Parallel Processing Symposium. (IPPS/SPDP), Orlando, FL, 1998, pp. 516–523.
[53]. P. Prucnal, E. Harstead, and S. Elby, Low-loss, high-impedance integrated fiber-optic tap, Optical Engineering, Vol. 29, Sept. 1990, pp. 1136–1142.
[54]. R. Malli, X. Zhang, and C. Qiao, Benefit of multicasting in all-optical networks, Proc., SPIE Conf. All-Optical Networks, Vol. 3531, Boston, MA, Nov. 1998, pp. 209–220.
[55]. L.H. Sahasrabuddhe and B. Mukherjee, Light-trees: Optical multicasting for improved performance in wavelength-routed networks, IEEE Communications Magazine, Vol. 37, 1999, pp. 67-73.
[56]. G. Sahin and M. Azizoglu, Multicast routing and wavelength assignment in wide-area networks,” Proc., SPIE Conf. All-Optical Networks, Vol. 3531, Boston, MA, Nov. 1998, pp. 196–208.
[57]. H. C. Lin, and C. H. Wang, A hybrid multicast scheduling algorithm for single-hop WDM networks, Journal of Lightwave Technology, Vol. 19, No. 11, Nov. 2001, pp. 1654-1664.
[58]. Y.Yang, J.Wang, and C. Qiao, Nonblocking WDM multicast switching networks, IEEE Transactions on Parallel and Distributed Systems, Vol. 11, Dec. 2000, pp. 1274–1287.
[59]. K. Bala, K. Petropoulos, and T. E. Stern. Multicasting in a linear lightwave network. Proc., IEEE INFOCOM, 1993, pp. 1350-1358.
[60]. X. Deng, G. Li, andW. Zang, Wavelength allocation on trees of rings, Networks, Vol. 35, No. 4, , 2000, pp. 248–252.
[61]. T. Erlebach, K. Jansen, C. Kaklamanis, and P. Persiano, An optimal greedy algorithm for wavelength allocation in directed tree networks, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 40, 1998, pp. 117–129.
[62]. X. Zhang, J. Wei, and C. Qiao, Constrained multicast routing in WDM networks with sparse light splitting, Journal of Lightwave Technology, Vol. 18, 2000, pp. 1917-1927.
[63]. D. Li, X. Du, X. Hu, L. Ruan, and X. Jia, Minimizing number of wavelengths in multicast routing trees in WDM networks, Networks, Vol. 35, 2000, pp. 260–265.
[64]. N. Sreenath, N. Krishna Mohan Reddy, G. Mohan, C. Siva Ram Murthy, Virtual source based multicast routing in DWM networks with sparse light splitting, IEEE, Proc., Workshop on High Performance Switching and Routing, 2001, pp. 141-145.
[65]. X.H. Jia, D.Z. Du and X.D. Hu, Integrated algorithm for delay bounded multicast routing and wavelength assignment in all optical networks, Computer Communications 24, 2001, pp. 1390-1399.
[66]. B. Chen and J. Wang, Efficient routing and wavelength assignment for multicast in WDM networks, IEEE Journal of Selected Areas in Communications, Vol 20, Jan. 2002, pp. 97-109.
[67]. D.N. Yang, W. Liao, Design of light-tree based logical topologies for multicast streams in wavelength routed optical networks, Proc., IEEE INFOCOM’03, San Francisco, CA, 2003.
[68]. R. Libeskind-Hadas, R. Melhem, Multicast routing and wavelength assignment in multihop optical networks, IEEE/ACM Transactions on Networking, Vol. 10, No. 5, Oct. 2002 pp. 621-629.
[69]. R.M. Karp, Reducibility among combinational problems, In R.E. Miller, J. W. Thatcher (Eds.), Complexity of Computer Computations, Plenum Press, New York, 1972, pp. 85-103.
[70]. R.C. Prim, Shortest connection networks and some generations, Bell System Technical Journal, Vol. 36, 1957, pp. 1389-1401.
[71]. B.M. Waxman, Routing of multipoint connections, IEEE Journal of Selected Areas in Communications, Vol. 6, 1988, pp. 1617-1622.
[72]. E.W. Dijstra, Anode on two problems in connexion with graph, Numerische Mathematik, Vol. 1, 1959, pp. 269-271.
[73]. M. Pascoal, E. Martins, and J. Santos, A new improvement for a k shortest paths algorithm, Investigação Operacional, Vol. 21, Jan., 2001, pp. 47-60.
[74]. D. Eppstein, Finding the k shortest paths, SIAM Journal on Computing, Vol. 28(2), 1998, pp. 652–673.
[75]. D.-R. Din and S.S. Tseng, A genetic algorithm for solving dual-homing cell assignment problem of the two-level wireless ATM network”, Computer Communications 25, p.1536-1547, 2002.
[76]. Erik Rolland, Abstract heuristic search methods for graph partitioning, Ph.D. Dissertation, Ohio State University, Columbus, Ohio. 1991.
[77]. L. Davis, (Ed) handbook of genetic Algorithms, Van Nostrand Reinhold, 1991, New York.
[78]. L. Kou, G. Markowsky, L. Berman, A fast algorithm for Steiner trees, Acta Informatica, Vol. 15, p. 141-145, 1981.
[79]. M.T. Chen, S.S. Tseng, Multicast routing under delay constraint in WDM network with different light splitting, Proc. International Computer Symposium 2002 (ICS 2002), Taiwan R.O.C.
[80]. M. Dorigo, V. Maniezzo, and A. Colorni, Positive feedback as a search strategy, Technical Report, 91-016, Politecnico di Milano, IT, 1991.
[81]. M. Dorigo, Optimization, Learning and natural algorithms, Ph.D. Dissertation, Dipartimento di Elettronica, Politecnico di Milano, Italy (in Italian), 1992.
[82]. G.N. Varela and M.C. Sinclair, Ant-colony optimization for virtual wavelength-Path routing and wavelength allocation, Proc., Congress on Evolutionary Computation (CEC’99), Washington DC, USA, Jul. 1999, pp. 1809-1816.
[83]. R.M. Garlick and R.S. Barr, Dynamic wavelength routing in WDM networks via ant colony optimization, Proc., 3th International Workshop on Ant Algorithms, Brussels, Belgium, Sep. 2002, pp. 250-255.
[84]. S.J. Shyu, P.Y. Yin and B.M.T. Lin, An ant colony optimization algorithm for the minimum weight vertex cover problem, Annals of Operations Research, Vol. 131, 2004, pp. 283–304.
[85]. M.S. Kwang and H.S. Weng, Ant colony optimization for routing and load-balancing: survey and new directions, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Human, Vol. 33, No. 5, Sep. 2003, pp. 560-572.
[86]. Y.P. Liu, M.G.. Wu, and J. Qian, The distributed multicast routing scheme with delay constraint using ant colony optimization, Proc. of the 6th World Congress on Intelligent Control and Automation, June, 2006, Dalian, China.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊