跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 11:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭培成
研究生(外文):Pei Cheng Cheng
論文名稱:醫學影像資料庫之研究
論文名稱(外文):A Study on Medical Image Database
指導教授:楊維邦楊維邦引用關係錢炳全錢炳全引用關係
指導教授(外文):Wei-Pang YangBeen-Chian Chien
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:93
中文關鍵詞:醫學影像查詢跨語言查詢相關回饋查詢
外文關鍵詞:Medical image retrievalCross-language retrievalRelevance feedback
相關次數:
  • 被引用被引用:0
  • 點閱點閱:552
  • 評分評分:
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:1
隨著數位化科技以及網路通訊的快速發展,影像資料在醫療院所、數位典藏以及網際網路上被大量的產生,日漸提高了影像檢索技術的需求。另一方面由於網路的快速連結,跨越了國界,各種語言的資料都可以在網路上檢索。本論文主要研究一個跨語言的醫學影像查詢系統,讓使用者可以使用熟悉的語言或是使用影像內容來找尋相關的醫學影像。
本論文探討的兩個研究主題,為醫學影像內容查詢以及跨語言的資訊檢索。在醫學影像內容查詢方面,我們提出了一些針對學影像內容特徵的表示法,相關的相似度計算方法,以及新的接受使用者回饋的模式,在實驗結果中顯示所提出的特徵表示法可以有效的提高準確率及查全率。在跨語言方面我們針對在翻譯時所常遇到的岐義性的問題,提出了利用本體知識來改善的方法,實驗結果顯示我們所提出解決岐義性問題的方法,可以有效提高查詢結果的準確率。
The importance of digital image retrieval techniques increases in the emerging fields of medical imaging, picture archiving and communication systems. In this dissertation, a bilingual medical image database system is proposed for users to retrieve medical images. The principal objective is to provide users a medical image retrieval system to find similar diagnosis and to obtain useful information for treatment.
This dissertation relates to two areas – medical image retrieval and cross-language information retrieval. We proposed an effective representation for content-based medical image retrieval and an approach to address the translation ambiguity problem for cross-language image retrieval. Furthermore, a novel relevance feedback mechanism is proposed to improve the retrieval effectiveness by interacting with users.
Chapter 1 Introduction 1
1.1 The Rationale of Cross Medical Image Retrieval System 2
1.2 Content Based Medical Image Retrieval 5
1.3 Combine Text and Visual Feature for Medical Image Retrieval 6
1.4 Medical Image Retrieval with Relevance Feedback 7
1.5 Motivation & Objective 8
1.6 Organization of This Dissertation 10
Chapter 2 Content Based Medical Image Retrieval 12
2.1 Proposed Methods for Medical Image Comparison 17
2.2 The Experiment and Result 27
Chapter 3 Combine Text and Visual Feature for Medical Image Retrieval 33
3.1 Previous Work for Cross-Language Document Retrieval 35
3.2 Combine Text and Visual Feature for Medical Image Database 41
3.3 Reduce the Cross-Language Translation Ambiguity 45
Chapter 4 Medical Image Retrieval with Relevance Feedback 57
4.1 Previous Relevance Feedback Works 58
4.2 Proposed Relevance Feedback Mechanism 62
Chapter 5 Conclusions and Future Research 70
Bibliography 72
Appendix 78
[1]A. M. Aisen, L. S. Broderick, H. Winer-Muram, C. E. Brodley, A. C. Kak, C. Pavlopoulou, J. Dy, C.-R. Shyu, and A. Marchiori, “Automated storage and retrieval of thin–section CT images to assist diagnosis: System description and preliminary assess¬ment,” Radiology, vol. 228, pp. 265–270, 2003.
[2]S. Ardizzoni, I. Bartolini, and M. Patella, “Windsurf: Region-based image Retrieva1 Using Wave1ets,” Proc. Int. Workshop on Similarity Search (IW0SS), pp.167-173, 1999.
[3]J. R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey, R. Jain, and C.-F. Shu, “The Virage image search engine: An open framework for image management,” in: I. K. Sethi, R. C. Jain (Eds.), Storage & Retrieval for Image and Video Databases IV, Vol. 2670 of IS&T/SPIE Proceedings, San Jose, CA, USA, pp. 76-87, 1996.
[4]L. Ballesteros, and W.B. Croft, “Dictionary-based methods for cross-lingual information retrieval,” Proc. of the 7th Int. DEXA Conference on Database and Expert Systems Applications, 1996.
[5]S. Belongie, C. Carson, H. Greenspan, and J. Malik, “Color and texture based image segmentation using EM and its application to content-based image retrieval,” in: Proc. of the International Conference on Computer Vision (ICCV'98), Bombay, India, pp. 675-682, 1998.
[6]S. Beretti, A. Del Bimbo, and P. Pala, “Content-based retrieval of 3D cellular structures,” in: Proceedings of the second International Conference on Multimedia and Exposition (ICME'2001), IEEE Computer Society, Tokyo, Japan, pp. 1096-1099, 2001.
[7]W. D. Bidgood, B. Bray, N. Brown, A. R. Mori, K. A. Spackman, A. Golichowsky, R. H. Jones, L. Korman, B. Dove, L. Hildebrand, and M. Berg, “Image acquisition context: Procedure description attributes for clinically relevant indexing and selective retrieval of biomedical images,” Journal of the American Medical Informatics Association, vol.6(1), pp.61-75, 1999.
[8]C. Buckley and G. Salton, “Optimization of relevance feedback weights,” in Proc. SIGIR’95, 1995.
[9]C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and J. Malik, “Blobworld: A system for region-based image indexing and retrieval,” in: D. P. Huijsmans, A. W. M. Smeulders (Eds.), Third International Conference On Visual Information Systems (VISUAL' 99), no. 1614 in Lecture Notes in Computer Science, Springer Verlag, Amsterdam, the Netherlands, pp.509-516, 1999.
[10]S. Chandrasekaran, “An eigenspace update algorithm for image analysis,” CVGIP: Graph. Models Image Process, 1997.
[11]G. Ciocca, I. Gagliardi, and R. Schettini, “Quicklook2: An integrated multimedia system,” International Journal of Visual Languages and Computing, Vol. 12 (1), pp. 81-103, 2001.
[12]P. Clough, M. Sanderson, and H. Muller, “The CLEF Cross Language Image Retrieval Track (ImageCLEF) 2004,” the 8th in the series of European Digigtal Library Conferences, ECDL 2004, September, Bath, UK, 2004.
[13]I. J. Cox, T. P. Minka, T. V. Papathomas, and P. N. Yianilos, “The Bayesian image retrieval system, pichunter: Theory, implementation, and psychophysical experiments,” IEEE Trans. Image Processing-Special Issue on Digital Libraries, 2000.
[14]M. W. Davis and Ted E. Dunning, “A TREC evaluation of query translation methods for multi-lingual text retrieval,” In D. K. Harman, TREC-4, NIST, Nov. 1995.
[15]M. W. Davis, and W. C. Ogden, “Implementing cross-language text retrieval system for large-scale text collection on the World Wide Web,” In AAAI Symposium on Cross-language Text and Speech Retrieval, American for Artificial Intelligence, 1997.
[16]S. Deerwester, S. T. Dumais, and R. Harshman, “Indexing by Latent Semantic analysis,” Journal of the American Society for Information Science, vol. 41 (6), Sept. 1990.
[17]J. A. Edwards, “Survey of Electronic Corpora and Related Resources for Language Researchers,” In Edwards & Lampert (eds) Talking data: Transcription and Coding in Discourse Research, NJ, Erlbaum, London and Hillsdale, 1993.
[18]C. Faloutsos and K. Lin, “Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia,” in Proc.SIGMOD, pp. 163-174, 1995.
[19]C. Fellbaum, WordNet (eds.): An Electronic Lexical Database. MIT Press, 1998.
[20]M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by Image and Video Content: The QBIC system,” IEEE Computer, vol. 28 (9), pp. 23-32, 1995.
[21]J. Gilarranz, J. Gonzalo, and F. Verdejo. “An Approach to Conceptual Text Retrieval Using the EuroWordNet Multilingual Semantic Database,” in Working Notes of AAAI Spring Symposium on Cross-Language Text and Speech Retrieval, Stanford, CA, 1997
[22]R. A. Greenes, and J. F. Brinkley, “Imaging systems,” in: Medical Informatics: Computer Applications in Healthcare (2nd edition), Springer, New York, pp. 485- 538, 2000.
[23]J.C. Goswami and A. K. Chan, “Fundamentals of Wave1ets, Theory, Algorithms, and Applications,” A Wiley Inter-science Publication, 1999.
[24]H. Haddouti, “Multilinguality Issues in Digital Libraries,” Proceedings of the EuroMed Net'98 Conference Nicosia, March 3-7, 1998
[25]A. Hampapur, A. Gupta, B. Horowitz, C.F. Shu, C. Fuller, J. Bach, M. Gorkani, R. Jain, “Virage video engine,” in: I. K. Sethi, R. C. Jain (Eds.), Storage and Retrieval for Image and Video Databases V, Vol. 3022 of SPIE Proceedings, pp. 352-360, 1997.
[26]J. Han, and M. Kamber, “Data mining: concepts and techniques,” Academic press, San Diego, CA, USA, 2001.
[27]Y. Hayashi, « TITAN: A Cross-linguistic Search Engine for the WWW,” in Working Notes of AAAI Spring Symposium on Cross-Language Text and Speech Retrieval, Stanford, CA, 1997.
[28]J. Huang, S. R. Kumar, M. Mitra, W. J. Zhu, and R. Zabih, “Image indexing Using Color Correlograms,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico 1997.
[29]D. A. Hull, and G. Grefenstette, “Querying across languages. A dictionary-based approach to multilingual information retrieval,” In Proceedings of the 19th ACM SIGIR Conference, 1996
[30]Y. Ishikawa, R. Subramanya, and C. Faloutsos, “Mindreader: Query databases through multiple examples,” in Proc. 24th VLDB Conf., New York, 1998.
[31]O. H. Karam, A. H. Hamad, S. Ghoneimy, G. Abdel Rahman, and S. Rady, “Wavelet-Based Retrieval for Medical Image Databases,” Proceedings of the international Conference on intelligent Computing and Information systems (ICICIS), pp. 309-314, 2002.
[32]M. Cannon, and D. R. Hush, “Query by image example: the CANDID approach,” in: W. Niblack, R. C. Jain (Eds.), Storage and Retrieval for Image and Video Databases III, Vol. 2420 of SPIE Proceedings, pp. 238-248, 1995.
[33]D. Keysers, J. Dahmen, H. Ney, B. B. Wein, and T. M. Lehmann, “A statistical framework for model–based image retrieval in medical appli¬cations,” Journal of Electronic Imaging, vol. 12 (1), pp.59–68, 2003.
[34]M. Kirby and L. Sirovich, “Application of the Karhunen-Loeve procedure for the characterization of human faces,” IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 103-108, Jan. 1990.
[35]T. M. Lehmann, M. O. Guld, C. Thies, B. Fischer, M. Keysers, D. Kohnen, H. Schubert, and B. B. Wein, “Content–based image retrieval in medical applications for picture archiving and communication systems,” in: Medical Imaging of SPIE Proceedings, Vol. 5033, San Diego, California, USA, 2003.
[36]Y. Lu, C. Hu, X. Zhu, H. Zhang, and Q. Yang, “A unified framework for semantics and feature based relevance feedback in image retrieval systems,” in Proc. 8th ACM Multimedia Int. Conf., Los Angeles, CA, Nov. 2000.
[37]W. Y. Ma, Y. Deng, and B. S. Manjunath, “Tools for texture- and color-based search of images,” in: B. E. Rogowitz, T. N. Pappas (Eds.), Human Vision and Electronic Imaging II of SPIE Proceedings, Vol. 3016, San Jose, CA, pp. 496-507, 1997.
[38]C. Meilhac and C. Nastar, “Relevance feedback and category search in image databases,” in IEEE Int. Conf. Multimedia Computing and Systems, 1999.
[39]G. Miller et al. Five Papers on WordNet. CSL Report 43. Cognitive Science Laboratory, Princeton University, 1990 (http://www.cogsci.princeton.edu/~wn/)
[40]I. J. Cox, T. P. Minka, T. V. Papathomas, and P. N. Yianilos, “The Bayesian image retrieval system, pichunter: Theory, implementation, and psychophysical experiments,” IEEE Trans. Image Processing-Special Issue on Digital Libraries, 2000.
[41]H. Muller, N. Michoux, D. Bandon, and A. Geissbuhler, “A review of content-based image retrieval systems in medicine clinical benefits and future directions,” International Journal of Medical Informatics, vol. 73, pp. 1-23, 2004.
[42]A. Natscv, R. Rastogi and K. shim, “WALRUS: A simiiarity Retrieval Algorithm for image Databases,” SIGMOD Conference, 1999.
[43]R. Ng and A. Sedighian, “Evaluating multi-dimensional indexing structures for images transformed by principal component analysis,” in Proc.SPIE Storage and Retrieval for Image and Video Databases, 1996.
[44]NUA, Internet Consultancy and Developer, October 1998 (http://www.nua.net).
[45]D. W. Oard, “Adaptive Vector Space Text Filtering for Monolingual and Cross-language Applications,” Ph.D. Thesis, University of Maryland, College Park, 1996.
[46]M. R. Ogiela, and R. Tadeusiewicz, “Semantic oriented syntactic algorithms for content recognition and understanding of images in medical databases,” in: Proceedings of the second International Conference on Multi¬media and Exposition (ICME’2001), IEEE Computer Society, Tokyo, Japan, pp. 621–624, 2001.
[47]T. Ojala, M. Rautiainen, E. Matinmikko and M. Aittola, “Semantic Image Retrieval with HSV Correlograms,” Proceedings of 12th Scandinavian Conference on Image Analysis, Bergen, Norway 2001.
[48]S. C. Orphanoudakis, C. E. Chronaki, and S. Kostomanolakis, “I2Cnet: A system for the indexing,” Storage and retrieval of medical images by content, Medical Informatics, vol. 19(2), pp. 109-122, 1994.
[49]A. H. Paquet, S. Zahir and R. K. Ward, “Wavelets Packets-based Image Retrieva1,” Proceedings of the IEEE Internationa1 Conference on Acoustics Speech and Signa1 Processing (ICASSP), 2002.
[50]A. Pentland, R. W. Picard, and S. Sclaro, “Photobook: Tools for content-based manipulation of image databases,” International Journal of Computer Vision, vol.18 (3), pp. 233-254, 1996.
[51]T. Pun, G. Gerig, O. Ratib, “Image analysis and computer vision in medicine,” Computerized Medical Imaging and Graphics, vol. 18(2), pp. 85-96, 1994.
[52]B. Revet, “DICOM Cook Book for Implementations in Madalities,” Philips Medical Systems, Eindhoven, Netherlands, 1997.
[53]B. Roberto and M. Ornella, “Image retrieval by examples,” IEEE Trans.Multimedia, vol. 2, Sept. 2000.
[54]J. J. Rocchio, “Relevance feedback in information retrieval,” in The SMART Retrieval System: Experiments in Automatic Document Processing, G. Salton, Ed. Englewood Cliffs, NJ: Prentice-Hall, pp.313-323, 1971.
[55]A. Rosset, H. Muller, M. Martins, N. Dfouni, J. P. Vallee, and O. Ratib, “Casimage Project a digital teaching files authoring environment,” Journal of Thoracic Imaging, vol. 19(2), pp.1-6, 2004.
[56]Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra, “Relevance feedback: A power tool for interactive content based image retrieval,” IEEE Transactions on Circuits and Systems for Video Technology, pp. 644-655, 1998.
[57]Y. Rui and T. S. Huang, “Relevance feedback: A power tool for interactive content-based image retrieval,” IEEE Circuits Systems for Video Technology, vol. 8, no. 5, 1999.
[58]Y. Rui and T. S. Huang, “A novel relevance feedback technique in image retrieval,” ACM Multimedia, 1999.
[59]G. Salton and M. J. McGill, “Introduction to Modern Information Retrieval,” New York: McGraw-Hill, 1983.
[60]G. Salton, “Automatic Text Processing,” Addison-Wesley Publishing Company, 1988.
[61]W. M. Shaw, “Term-relevance computation and perfect retrieval performance,” Information Processing Manage, vol. 31, pp. 491–498, 1995.
[62]P. Sheridan, and J. P. Ballerini, “Experiments in Multilingual Retrieval Using the Spider System,” In Proceeding of the 19th Annual International ACM SIGIR, 1996
[63]C. R. Shyu, C. E. Brodley, A. C. Kak, A. Kosaka, A. M. Aisen, and L. S. Broderick, “ASSERT: A physician in the loop content based retrieval system for HRCT image databases,” Computer Vision and Image Understanding (special issue on content–based access for image and video libraries), vol. 75, pp.111–132, 1999.
[64]A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-based image retrieval at the end of the early years,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, No. 12, pp. 1349-1380, 2000.
[65]J. R. Smith, “Integrated Spatial and Feature Image Systems: Retrieval, Compression and Analysis,” PhD thesis, Graduate School of Arts and Sciences, Columbia University, February 1997.
[66]E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, “Wavelets for computer Graphics–Theory and Applications,” San Francisco, CA: Morgan Kaufmann Publilshers, Inc, 1996.
[67]D. M. Squire, W. Muller, H. Muller, and T. Pun, “Content-based query of image databases,” in aspirations from text retrieval, Pattern Recognition Letters (Selected Papers from The 11th Scandinavian Conference on Image Analysis SCIA '99), vol. 21, pp. 1193-1198, 2000.
[68]M. J. Swain and D. H. Ballard, “Color Indexing,” International Journal of Computer Vision, Vol. 7, pp.11-32, 1991.
[69]H. D. Tagare, C. Jae, and J. Duncan, “Medical image databases: A content–based retrieval approach,” Journal of the American Medical Informatics Association, vol. 4 (3), pp. 184-198, 1997.
[70]N. Vasconcelos and A. Lippman, “Learning from user feedback in image retrieval systems,” in Proc. NIPS’99, Denver, CO, 1999.
[71]J. Vendrig, M. Worring, and A. W. M. Smeulders, “Filter image browsing: Exploiting interaction in image retrieval,” Visual Information and Information Systems, Proceedings of the Third International Conference VISUAL '99, Amsterdam, The Netherlands, Lecture Notes in Computer Science 1614. Springer, pp. 147-154, 1999.
[72]M. Wechsler, and P. Schäuble, “Multilingual Information Retrieval Based on Document Alignment Techniques,” In Lecture Notes in Computer Science. Ed. Ch. Nikolau, C. Stephanidis. Second European Conference on Research and Advanced Technology for Digital Libraries ECDL´98, Crete, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文