跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧彥廷
論文名稱:有時間窗限制的線上廣告排程
論文名稱(外文):Scheduling of Banner Advertisements with Time Windows
指導教授:林妙聰林妙聰引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:38
中文關鍵詞:網路廣告時間窗
外文關鍵詞:Banner advertisementsoperations schedulingtime windows
相關次數:
  • 被引用被引用:0
  • 點閱點閱:721
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著網際網路使用者數量的快速累積,網際網路其媒體力量隨之變得具體而引人注目。網頁版面上的橫幅廣告為其最重要的商業應用之一,同時也是許多入口網站最主要的收入來源。然而,對於如何有效率的排程這些網路廣告以增加獲利的研究卻顯得稀少,因此,我們在這篇論文中,提出了一個更加貼近今日網際網路商業情形的模式。在此模式中,我們為每筆廣告訂單設定一段有效的刊登期間,然後站在廣告排程者的立場,努力滿足每筆訂單中對不同廣告欄位的次數需求,完全滿足者方可依各廣告欄位的訂價賺取收入。此模式不同於以往的研究,以廣告欄位的種類計價,而不以所占用的分割廣告空間大小為計價方式。而排程的目標,則是選取訂單並滿足其訂單內容,以獲得最大的營收。在這篇論文裡,我們先提出一個正式的數學式描述這個題目,考量此題目的計算複雜度,我們試著在合理的運算時間下尋求近似解。我們設計了一個三段式解題的啟發式演算法來解題,也設計一個推算可得利潤上限的方法,最後實作了此啟發式演算法,實驗結果顯示此法可有效的填滿百分之九十七的總廣告欄位。
As the population of the Internet users increases explosively, the media power of the Internet becomes concrete and remarkable. One of the leading commercial applications on the Internet is banner advertisements publishing, which also is the major source of income of many portal websites. However, there are few researches on how to schedule banners efficiently and profitably in the past decades. We thereby propose a new model for banner advertisements scheduling that further resembles the Internet business world. In the proposed model, we apply a feasible time window to each candidate order, and we schedule advertisements into various predefined banner spaces on the webpage. This approach allows various pricing strategies according to banner types, contrary to previous research models which schedule and price by banner space sharing. Each order will demand its frequency of each type of banner. The goal is to select orders and schedule their demands to achieve a maximum total profit. We first give a mathematical formulation to formally describe the problem. Due to the computational complexity of the studied problem, we seek to produce approximate solutions in a reasonable time. A three-phase heuristic is developed to cope with this problem. An upper bound on the profits is developed. Computational experiments are designed to examine the performance of the heuristic. Statistics from the experiments reveal that the heuristic can successfully fill up to 97 % of the ad spaces.
Chapter 1 Introduction .1
Chapter 2 Problem statement and preliminaries7
Chapter 3 Placement Algorithm .9
Chapter 4 Upper Bound ..19
Chapter 5 Computational Experiments..23
Chapter 6 Conclusions 28
References .29
Appendix: ..31
[1] Adler, M., P.B. Gibbons, Y. Matias. 2002. Scheduling space-sharing for Internet advertising. Journal of Scheduling. 5 103-119.
[2] Amiri, A., S. Menon. 2003. Efficient scheduling of Internet banner advertisements. ACM Transactions on Internet Technology. 3(4) 334-346.
[3] Amiri, A., S. Menon. 2006. Scheduling web banner advertisements with multiple display frequencies. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans. 36(2) 245-251.
[4] Bollapragada, S., H. Cheng, M. Phillips, M. Garbiras, M. Scholes, T. Gibbs, M. Humphreville. 2002. NBC’s optimization systems increase revenues and productivity. Interfaces. 32(1) 47-60.
[5] Bollapragada, S., M. Garbiras. 2004. Scheduling commercials on broadcast television. Operations Research. 52(3) 337-345.
[6] Bollapragada, S., M. R. Bussieck, S. Mallik. 2004. Scheduling commercial videotapes in broadcast television. Operations Research. 52(5) 679-689.
[7] Chickering, D.M., D. Heckerman. 2003. Targeted advertising on the web with inventory management. Interfaces. 33(5) 71-77.
[8] Dawande, M., S. Kumar, C. Sriskandarajah. 2003.Performance bounds of algorithms for scheduling advertisements on a web page. Journal of Scheduling. 6 373-393.
[9] Dawande, M., S. Kumar, C. Sriskandarajah. 2005. Scheduling web advertisements: a note on the minspace problem. Journal of Scheduling. 8 97-106.
[10] Freund, A., J. Naor. 2004. Approximating the advertisement placement problem. Journal of Scheduling. 7 365-374.
[11] Menon, S., A. Amiri. 2004. Scheduling banner advertisements on the web. INFORMS Journal on Computing. 16(1) 95-105.
[12] Payne, T., E. David, N.R. Jennings, M. Sharifi. Auction mechanisms for efficient advertisement selection on public displays. The 17th European Conference on Artificial Intelligence. 259
[13] Reyck, B.D., Z. Degraeve. 2003. Broadcast scheduling for mobile advertising. Operations Research. 51(4) 509-517.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top