|
1. The website of Directorate-General of Budget, Accounting and Statistics, http://www.dgbas.gov.tw/mp.asp?mp=1 2. Hoogendoorn, S.P., and P.H.L. Bovy, “State-of-the-art of Vehicular Traffic Flow Modelling”, Special Issue on Road Traffic Modelling and Control of the Journal of Systems and Control Engineerin, Vol. 215, pp. 283-303 , 2001. 3. Cho. and Lin, “Macroscopic Dynamic Traffic Flow Model with Mobility Function”, A (Master) Dissertation Submitted to Department of Transportation Technology and Management, NCTU, 2004。 4. Prigogine, I., and Andrews F. C., “A Boltzmann-like Approach for Traffic Flow”, Operation Researches, Vol. 8, pp.789-797, 1960. 5. Prigogine, I., and R. Herman, Kinetic Theory of Vehicular Traffic. American Elsevier New-York, pp.1-36, 1971. 6. Prigogine, I., “A Boltzmann-like Approach to the Statistical Theory of Traffic”, Theory of Traffic Flow, 1961. 7. Paveri-Fontana, S.L., “On Boltzmann-Like treatments for traffic flow: a critical review of the basic model and an alternative proposal for dilute traffic analysis”, Transportation Research B, pp. 225-235, Vol. 9, 1975. 8. Helbing, D., “Modeling Multi-lane Traffic Flow with Queuing Effects”, Physica A, pp. 175-194, 1997. 9. Helbing, D., Verkehrsdynamik – neue Physikalische Modellieringskonzepte. Springer-Verlag, 1997. 10. Hoogendoorn, S.P., and P.H.L. Bovy, “Continuum Modeling of Multiclass Traffic Flow”, Transportation Research B, Vol. 34, Issue. 2, pp. 123-146, 2000. 11. Hoogendoorn, S.P., and P.H.L. Bovy, “Platoon-Based Multiclass Modeling of Multilane Traffic Flow”, Networks and Spatial Economics, 2001, pp. 137-166. 12. Takashi, N., “Gas Kinetics of Traffic Jam”, Journal of the Physical Society of Japan, Vol. 66, No. 4, pp. 1219-1224, 1997. 13. Wagner, C., “Successive deceleration in Boltzmann-like traffic equations”, Physical Review E, Vol. 55, No. 6, pp. 6969-6978, 1997. 14. Klar, A., and R. Wegener, “A Hierarchy of Models for Multilane Vehicular Traffic I”, SIAM Journal of Applied Mathematics, Vol. 59, No. 3, pp.983-1001, 1999. 15. Hoogendoorn, S.P., and P.H.L. Bovy, “Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow”, Transportation Research Part B, Vol. 35, pp. 317-336, 2001. 16. Cho, H.J., and S.C. Lo, “Modeling Self-consistent Multi-class Dynamic Traffic Flow”, Physica A, Vol. 312, pp. 342-362, 2002. 17. Wagner, C., C. Hoffmann, R. Sollacher, J. Wagenhuber, and B. Schurmann, “Second-order Continuum Traffic Flow Model“, Physical Review E, Vol. 54, No. 5, pp.5073-5085, 1996. 18. Shvetsov, V. I., “Mathematical Modeling of Traffic Flows”, Automation and Remote Control, Vol. 64, No. 11, pp. 3-46, 2003. 19. Helbing, D., “High-fidelity Macroscopic Traffic Equations”, Physica A, Vol. 219, pp. 391-407, 1995. 20. Helbing, D., “Theoretical foundation of macroscopic traffic models”, Physica A, Vol. 219, pp. 375-390, 1995. 21. Alvarez, A., J. J. Brey, and J. M. Casado, “A Simulation Model for Traffic Flow with Passing”, Transportation Research, Vol. 24, pp.193-202, 1990. 22. Whitham, G. B., Linear and Nonlinear Waves, Wiley, pp.113-117, 1974. 23. Gupta, A. K., and V. K. Katiyar, “A New Anisotropic Continuum Model for Traffic Flow“, Physica A, Vol. 368, pp. 551-559, 2006. 24. Haberman, R., Mathematical models : mechanical vibrations, population dynamics, and traffic flow, pp. 303-322, 1977. 25. Helbing, D., and T. Martin, “Numerical Simulation of Macroscopic Traffic Equations”, Computing in Science & Engineering, Vol. 1, No. 5, pp. 89-99, 1999. 26. Helbing, D., “Improved Fluid-Dynamic Model for Vehicular Traffic”, Physical Review E, Vol. 51, Num. 4, pp. 3164-3169, 1995.
|