跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅昱瑄
研究生(外文):Yu-Hsuan Fu
論文名稱:車流動力學之連續減速模式
論文名稱(外文):The Successive Deceleration Model of Kinetic Traffic Flow
指導教授:卓訓榮卓訓榮引用關係
指導教授(外文):Hsun-Jung Cho
學位類別:碩士
校院名稱:國立交通大學
系所名稱:運輸科技與管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:73
中文關鍵詞:介觀車流車流動力學順時速度變化
外文關鍵詞:Mesoscopic traffic flowKinetic traffic flowInstant velocity-changing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
欲發展良好的交通控制解決交通問題需要有充足的資訊,在相關資訊中最重要且不易估算的就是車流量的預測,車流模式的發展就是朝此方向之研究,關於介觀車流的相關研究國內相關研究仍未完整,尚有許多介觀車流議題需要被討論與研究,所以本研究欲藉由回顧較具重要性的介觀的車流動力學模式,將其重要貢獻與特性整理,並且建構一可較真確描述道路車流情形之介觀車流模式。
本研究引入具有物理意義之減速度考慮項目,放鬆交互影響項中瞬時速度變化與未考慮有限空間因素影響,藉由將這些特性納入並建構一新的介觀車流之動力學方程之中;並且利用動差函數方式將本研究所建構的介觀模式積分,可以獲得以巨觀參數─密度 、平均速度 與變異數 為主的巨觀方程式;而後再以特徵速度、均衡解與數值模擬加以分析該模式的特性,並獲得因本研究引入等減速度可比以往研究的模式可多加解釋的特性,比較不同超車機率下不同的加速度值,在低的超車機率下,等減速度會比較有差別,在高的超車機率下,等減速度看不出差別,因為可很自由的超車情況下,使用到等減速度的車輛相形較少,所以對整體較看不出差別。由此可知本研究所建構的介觀車流動力學模式可較真確描地述更多車流情形。另外在撰寫論文時,將本研究的想法與行為意義清楚傳達,並將過程中的數學推導詳細記錄,希冀能對於介觀車流有興趣者有所幫助,以期許將來能有利於實際應用的發展。
In order to develop traffic control to solve traffic problem, we need sufficient information. The related and the most important information is to estimate quantity of traffic flow. Developing traffic flow model is one of ways to research. However, the research about mesoscopic traffic flow, gas-kinetic traffic flow, is not yet complete so we want to review some important researches and arrange the focus. And we construct a gas-kinetic traffic flow model in order to describe real traffic more.
In this research, we introduce uniform deceleration with physical meaning to relax instant velocity-changing and not consider finite space in interaction term and construct a new model. Then we use momentum function to obtain three macroscopic models with density , average velocity and variance . We use characteristic velocity, equilibrium and numerical simulation to analysis the accent of our model, and we know our model could describe more phenomenon than others.
Compared with different uniform decelerations in different passing probability conditions, we could observe that different uniform decelerations make difference in smaller passing probability. Different uniform decelerations make no difference in bigger passing probability, because cars use few uniform decelerations in dilute traffic. Therefore, our research could describe more traffic phenomenon. Besides, we explain our thought and the meaning of our model clear, and record mathematic processes explicitly. We hope this research could help those who are interested in mesoscopic traffic flow and help the development of real application.
Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Research Purpose 3
1.3 Research Scope 4
1.4 Research Procedure 5
Chapter 2 Literature Review 8
2.1 One-Lane and One-Class 8
2.2 Multilane and Multiclass 11
2.3 Rearrange Papers 13
2.4 Summary 15
Chapter 3 Construct Mesoscopic Traffic Flow Model 17
3.1 The Question Description 17
3.2 Model Construction 18
3.3 Summary 22
Chapter 4 Macroscopic model 23
4.1 Assumption 23
4.2 Density Equation 26
4.3 Average velocity equation 28
4.4 Variance 33
4.5 Summary 40
Chapter 5 Characteristics Analysis of Macroscopic Models 41
5.1 Characteristic Velocity Analysis 41
5.2 Equilibrium Analysis 45
5.3 Numerical Simulation Analysis 48
5.4 Summary 64
Chapter 6 Contribution and Future Works 66
6.1 Contribution 66
6.2 Future Works 67
Reference… 68
Appendix A 70
Appendix B - Symbols 71
1. Variables 71
2. Constants 72
3. Functions 72
4. Vectors 73
1. The website of Directorate-General of Budget, Accounting and Statistics, http://www.dgbas.gov.tw/mp.asp?mp=1
2. Hoogendoorn, S.P., and P.H.L. Bovy, “State-of-the-art of Vehicular Traffic Flow Modelling”, Special Issue on Road Traffic Modelling and Control of the Journal of Systems and Control Engineerin, Vol. 215, pp. 283-303 , 2001.
3. Cho. and Lin, “Macroscopic Dynamic Traffic Flow Model with Mobility Function”, A (Master) Dissertation Submitted to Department of Transportation Technology and Management, NCTU, 2004。
4. Prigogine, I., and Andrews F. C., “A Boltzmann-like Approach for Traffic Flow”, Operation Researches, Vol. 8, pp.789-797, 1960.
5. Prigogine, I., and R. Herman, Kinetic Theory of Vehicular Traffic. American Elsevier New-York, pp.1-36, 1971.
6. Prigogine, I., “A Boltzmann-like Approach to the Statistical Theory of Traffic”, Theory of Traffic Flow, 1961.
7. Paveri-Fontana, S.L., “On Boltzmann-Like treatments for traffic flow: a critical review of the basic model and an alternative proposal for dilute traffic analysis”, Transportation Research B, pp. 225-235, Vol. 9, 1975.
8. Helbing, D., “Modeling Multi-lane Traffic Flow with Queuing Effects”, Physica A, pp. 175-194, 1997.
9. Helbing, D., Verkehrsdynamik – neue Physikalische Modellieringskonzepte. Springer-Verlag, 1997.
10. Hoogendoorn, S.P., and P.H.L. Bovy, “Continuum Modeling of Multiclass Traffic Flow”, Transportation Research B, Vol. 34, Issue. 2, pp. 123-146, 2000.
11. Hoogendoorn, S.P., and P.H.L. Bovy, “Platoon-Based Multiclass Modeling of Multilane Traffic Flow”, Networks and Spatial Economics, 2001, pp. 137-166.
12. Takashi, N., “Gas Kinetics of Traffic Jam”, Journal of the Physical Society of Japan, Vol. 66, No. 4, pp. 1219-1224, 1997.
13. Wagner, C., “Successive deceleration in Boltzmann-like traffic equations”, Physical Review E, Vol. 55, No. 6, pp. 6969-6978, 1997.
14. Klar, A., and R. Wegener, “A Hierarchy of Models for Multilane Vehicular Traffic I”, SIAM Journal of Applied Mathematics, Vol. 59, No. 3, pp.983-1001, 1999.
15. Hoogendoorn, S.P., and P.H.L. Bovy, “Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow”, Transportation Research Part B, Vol. 35, pp. 317-336, 2001.
16. Cho, H.J., and S.C. Lo, “Modeling Self-consistent Multi-class Dynamic Traffic Flow”, Physica A, Vol. 312, pp. 342-362, 2002.
17. Wagner, C., C. Hoffmann, R. Sollacher, J. Wagenhuber, and B. Schurmann, “Second-order Continuum Traffic Flow Model“, Physical Review E, Vol. 54, No. 5, pp.5073-5085, 1996.
18. Shvetsov, V. I., “Mathematical Modeling of Traffic Flows”, Automation and Remote Control, Vol. 64, No. 11, pp. 3-46, 2003.
19. Helbing, D., “High-fidelity Macroscopic Traffic Equations”, Physica A, Vol. 219, pp. 391-407, 1995.
20. Helbing, D., “Theoretical foundation of macroscopic traffic models”, Physica A, Vol. 219, pp. 375-390, 1995.
21. Alvarez, A., J. J. Brey, and J. M. Casado, “A Simulation Model for Traffic Flow with Passing”, Transportation Research, Vol. 24, pp.193-202, 1990.
22. Whitham, G. B., Linear and Nonlinear Waves, Wiley, pp.113-117, 1974.
23. Gupta, A. K., and V. K. Katiyar, “A New Anisotropic Continuum Model for Traffic Flow“, Physica A, Vol. 368, pp. 551-559, 2006.
24. Haberman, R., Mathematical models : mechanical vibrations, population dynamics, and traffic flow, pp. 303-322, 1977.
25. Helbing, D., and T. Martin, “Numerical Simulation of Macroscopic Traffic Equations”, Computing in Science & Engineering, Vol. 1, No. 5, pp. 89-99, 1999.
26. Helbing, D., “Improved Fluid-Dynamic Model for Vehicular Traffic”, Physical Review E, Vol. 51, Num. 4, pp. 3164-3169, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top