|
[1] P. Whittle, “The Psychophysics of Contrast Brightness,” In A. L. Gilchrist (Ed.), Lightness, Brightness, and Transparency, pp. 35-110. Hillsdale, NJ: Lawrence Erlbaum Associates, 1994. [2] Semiconductor Equipment and Materials International (SEMI) Standard, “New Standard: Definition of Measurement Index (SEMU) for Luminance Mura in FPD Image Quality Inspection,” draft number: 3324, pp. 1-6, 2002. [3] Y. Mori, R. Yoshitake, T. Tamura, T. Yoshizawa and S. Tsuji, “Evaluation and Discrimination Method of “Mura” in Liquid Crystal Displays by Just Noticeable Difference Observation,” Proceedings of SPIE (The International Society for Optical Engineering), Optomechatronic Systems III, vol. 4902, pp. 715-722, Oct. 2002. [4] D. G. Lee, I. H. Kim, M. C. Jeong, B. K. Oh, and W. Y. Kim, “Mura Analysis Method by Using JND Luminance and The SEMU Definition,” Proceedings of SID (Society for Information Display), pp. 1467-1470, 2003. [5] T. Tamura, M. Baba and T. Furuhata, “Effect of The Background Luminance on Just Noticeable Difference Contrast of ‘Mura’ in LCDs,” Proceedings of SID (Society for Information Display), pp. 1527-1530, 2003. [6] R. S. Berns, “Billmeyer and Saltzman’s Principles of Color Technology, 3rd Edition,” John Wiley and Sons, 2000. [7] http://cit.dixie.edu/vt/reading/gamuts.asp, “Illustration of The CIE L*a*b* Color Space”. [8] K. N. Plataniotis and A. N. Venetsanopoulos, “Color Image Processing and Applications,” Springer, 2000. [9] Video Electronics Standards Association (VESA): Flat Panel Display Measurements Standard, version 2.0. [10] Y. Mori, K. Tanahashi, and S. Tsuji, “Quantitative Evaluation of Visual Performance of Liquid Crystal Displays,” Proceedings SPIE (The International Society for Optical Engineering), The Algorithms and Systems for Optical Information Processing, vol. 4113, pp. 242-249, 2000. [11] W. K. Pratt, S. S. Sawkar, and K. O’Reilly, “Automatic Blemish Detection in Liquid Crystal Flat Panel Displays,” Proceedings of SPIE (The International Society for Optical Engineering), vol. 3306, pp. 2-13, 1998. [12] V. Gibour and T. Leroux, “Automated, Eye-like Analysis of Mura Defects,” Proceedings of SID (Society for Information Display), pp. 1440-1443, 2003. [13] L. Lucchese and S. K. Mitra, “Color Image Segmentation: A State-of-The-Art Survey,” Proc. The Indian National Science Academy (INSA-A), vol. 67, A, no.2, pp. 207-221, New Delhi, India, Mar. 2001. [14] W. Y. Ma and B. S. Manjunath, “Edge Flow: A Technique for Boundary Detection and Image Segmentation,” IEEE Trans. Image Processing, vol. 9, no. 8, pp. 1375-1388, 2000. [15] Y. Deng, and B. S. Manjunath, “Unsupervised Segmentation of Color-texture Regions in Images and Video,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 8, pp. 800-810, Aug. 2001. [16] J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. 8, no. 6, pp. 679-698, Nov. 1986. [17] A. Cumani, “Edge Detection in Multispectral Images,” CVGIP: Graphical Models and Image Processing, vol. 53, no. 1, pp. 40-51, Jan. 1991. [18] W. Y. Ma and B.S. Manjunath, “Edge Flow: A Framework of Boundary Detection and Image Segmentation,” Proc. IEEE Conf. on Computer Vision Pattern Recognition, pp. 744-749, June 1997. [19] C. Xu and J. L. Prince, “Snakes, Shapes, and Gradient Vector Flow,” IEEE Trans. Image Processing, vol. 7, no.3, pp. 359-369, Mar. 1998. [20] L. Vincent and P. Soille, “Watersheds in Digital Space: An Efficient Algorithm Based on Immersion Simulations,” IEEE Trans. Pattern Anal. Machine Intell., vol. 13, no. 6, pp. 583-598, June 1991. [21] S. C. Zhu and A. Yuille, “Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 18, no. 9, pp.884-900, Sep. 1996. [22] K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K. Katsaggelos, “Hybrid Image Segmentation Using Watersheds and Fast Region Merging,” IEEE Trans. Image Processing, vol. 7, no. 12, pp. 1684-1699, Dec. 1998. [23] Y. Deng, B.S. Manjunath and H. Shin*, “Color Image Segmentation,” Proc. IEEE Conf. on Computer Vision Pattern Recognition, vol. 2, pp. 446-451, June 1999. [24] G. T. Herman, B. M. Carvalho, “Multiseeded Segmentation Using Fuzzy Connectedness,” IEEE Trans. Pattern Anal. Machine Intell., vol. 23, no. 5, pp. 460-474, May 2002. [25] I. Vanhamel, I. Pratikakis, and H. Sahli, “Multiscale Gradient Watersheds of Color Images,” IEEE Trans. Image Processing, vol. 12, no. 6, pp. 617-626, June 2003. [26] M. A. Ruzon and C. Tomasi. “Edge, Junction, and Color Detection Using Color Distribution,” IEEE Trans. Pattern Anal. Machine Intell., vol. 23, no.11, pp. 1281-1295, Nov. 2001. [27] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach toward Feature Space Analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603-619, May 2002. [28] Y. Cheng, “Mean Shift, Mode Seeking, and Clustering,” IEEE Trans. Pattern Anal. Machine Intell., vol. 17, no. 8, pp. 790-799, Aug. 1995. [29] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Proc. IEEE Conf. on Computer Vision Pattern Recognition, pp. 731-737, June 1997. [30] D. Comaniciu and P. Meer, “Robust Analysis of Feature Spaces: Color Image Segmentation,” Proc. IEEE Conf. on Computer Vision Pattern Recognition, pp. 750-755, June 1997. [31] T. Hofmann, J. Puzicha, and J. M. Buhmann, “Unsupervised Texture Segmentation in a Deterministic Annealing Framework,” IEEE Trans. Pattern Anal. Machine Intell., vol. 20, no. 8, pp. 803-818, Aug. 1998. [32] D. Comaniciu and P. Meer, “Mean Shift Analysis and Applications,” Proc. IEEE Conf. on Intl. Conf. on Computer Vision, vol. 2, pp. 1197-1203, Kerkyra, Greece, Sep. 1999. [33] M. A. Ruzon and C. Tomasi, “Color Edge Detection with The Compass Operator,” Proc. IEEE Conf. on Computer Vision Pattern Recognition, vol. 2, pp. 160-166, June 1999. [34] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000. [35] H. D Cheng and Y. Sun, “A Hierarchical Approach to Color Image Segmentation Using Homogeneity,” IEEE Trans. Image Processing, vol. 9, no. 12, pp. 2071-2082, Dec. 2000. [36] T. W. Lee and M. S. Lewicki, “Unsupervised Image Classification, Segmentation, and Enhancement Using ICA Mixture Models,” IEEE Trans. Image Processing, vol. 11, no. 3, pp. 270-279, Mar. 2002. [37] Z. Tu and S. C. Zhu, “Image Segmentation by Data-Driven Markov Chain Monte Carlo,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 5, pp. 657-673, May 2002. [38] C. Carson, S. Belongie, H. Greenspan, and J. Malik , “Blobworld Image Segmentation Using Expectation-Maximization and Its Application to Image Querying,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 8, pp. 1026-1038, Aug. 2002. [39] O. J. Tobias and R. Seara, “Image Segmentation by Histogram Thresholding Using Fuzzy Sets,” IEEE Trans. Image Processing, vol. 11, no. 12, pp. 1457-1465, Dec. 2002. [40] T. Gevers, “Adaptive Image Segmentation by Combining Photometric Invariant Region and Edge Information,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 6, pp. 848-852, June 2002. [41] H. D. Cheng, X. H. Jiang, Y. Sun, and J. Wang, “Color Image Segmentation: Advances and Prospects,” Pattern Recognit., vol. 34, no. 6, pp. 2259-2281, Dec. 2001. [42] Y. J. Zhang, “A Survey on Evaluation Methods for Image Segmentation,” Pattern Recognit., vol. 29, no.8, pp. 1335-1346, Aug. 1996. [43] Y. J. Zhang, “A Review of Recent Evaluation Methods for Image Segmentation,” Proc. 6th Int. Symp. on Signal processing and its applications, pp. 148-151, Kuala Lumpur, Malaysia, Aug. 2001. [44] M. D. Heath, S. Sarkar, T. Sanocki, and K. W. Bowyer, “A Robust Visual Method for Assessing The Relative Performance of Edge-detection Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 12, pp. 1338-1359, Dec. 1997. [45] A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. B. Goldgof, K. Bowyer, D. W. Eggert, A. Fitzgibbon, and R. B. Fisher, “An Experimental Comparison of Range Image Segmentation Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 7, pp. 673-689, July 1996. [46] P. L. Correia and F. Pereira, “Objective Evaluation of Video Segmentation Quality,” IEEE Trans. Image Processing, vol. 12, no.2, pp. 186-200, Feb. 2003. [47] D. D. Martin, C. C. Fowlkes, D. Tal, and J. Malik, “A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics,” Proc. IEEE Int. Conf. on Computer vision, vol. 2, pp. 416-423, Vancouver, Canada, July 2001. [48] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 5, pp. 530-549, May 2004. [49] J. Liu and Y. H. Yang, “Multiresolution Color Image Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 7, pp. 689-700, July 1994. [50] M. Borsotti, P. Campadelli, and R. Schettini, “Quantitative Evaluation of Color Image Segmentation Results,” Pattern Recognit. Letters, vol. 19, no. 8, pp. 741-747, June 1998. [51] Intel corp. patent, “Anti-Aliasing Diffractive Aperture and Optical System Using The Same,” US. Patent: 5940217, Aug. 1999. [52] “Aliasing Reduction in Discrete Imaging System Using Pupil Function Controlling,” Proceedings of Acta Opt. Sin., vol. 19, no.3, pp.289-294, 1999. [53] G. Wyszecki and W. Stiles, “Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition,” New York: John Wiley and Sons, 1982. [54] International Electrotechnical Commission (IEC) 61966-2-1, http://www.iec.ch, “sRGB – Default RGB colour space,” Oct. 1999. [55] G. Sharma and H. J. Trussell, “Digital Color Image,” IEEE Trans. Image Processing, vol. 6, no. 7, pp. 901-932, July 1997. [56] J. Y. Hardeberg, “Acquisition and Reproduction of Colour Images: Colorimetric and Multispectral Approaches,” PhD dissertation, Ecole Nationale Supérieure des Télécommunications’, Paris, France, 1999. [57] ITU-R Recommendation BT. 500-11, “Methodology for The Subjective Assessment of The Quality of Television Pictures”, Geneva, 2002 (available at http://www.itu.org). [58] S. Siegel, “Nonparametric Statistics for The Behavioral Sciences,” McGraw-Hill Kogakusha Ltd., Tokyo, 1956. [59] R. A. Ronald and F. Yates, “Statistical Methods for Research Workers, 14th Edition,” Oliver and Boyd Ltd., Edinburgh, 1970.
|