|
[1] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of Ion-Implanted MOSFETs with Very Small Physical Dimensions,” IEEE J. Solid-State Circuits, vol. SC-9, pp. 256-268, 1974. [2] K. F. Schuegraf and C. Hu, “Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation,” IEEE Trans. Electron Devices, vol. 41, pp. 761-767, 1994. [3] B. Neri, P. Olivo, R. Saletti, and M. Signoretta, “Dielectric breakdown and reliability of MOS microstructures: Traditional characterization and low-frequency noise measurements,” Microelectron. Reliab., vol. 35, pp. 529-537, 1995. [4] J. R. Pfiester, L. C. Parrillo, and F. K. Baker, “A physical model for boron penetration through thin gate oxides from p+ polysilicon gates,” IEEE Electron Device Lett., vol. 11, pp. 247-249, 1990. [5] H.-H. Tseng, M. Orlowski, P. J. Tobin, and R. L. Hance, “Fluorine diffusion on a polysilicon grain noundary network in relation to boron penetration from p+ gates,” IEEE Electron Device Lett., vol. 13, pp. 14-16, 1992. [6] K. S. Krisch, M. L. Green, F. H. Baumann, D. Brasen, L. C. Feldman and L. Manchanda,“Thickness dependence of boron peretration through O2 and N2O-grown gate oxides and its impact on threshold voltage variation,“ IEEE Trans. Electron Devices, vol. 43, pp. 982-990, 1996. [7] Aoyama, T. Suzuki, K. Tashiro, H. Tada and Y. Arimoto, “Flat-band voltage shifts in P-MOS devices caused by carrier activation in p+-Polycrystalline silicon and boron penetration,” in IEDM Tech. Dig., 1997, pp. 627-630. [8] K.S. Krisch, L. Manchanda, F.H. Baumann, M.L. Green, D. Brasen, L.C. Feldman, A. Ourmazd, “Impact of Boron Diffusion through O2 and N2O Gate Dielectrics on the Process Margin of Dual-Poly Low Power CMOS,” in IEDM Tech. Dig., 1994, pp. 325-328. [9] T. Ito, T. Nakamura and H. Ishikawa, “Advantages of thermal nitride and nitroxide gate films in VLSI process,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 128-132, 1982. [10] F. L. Terry, Jr., R. J. Aucoin, M. L. Naiman, and S. D. Senturia, “Radiation effects in nitrided oxides,” IEEE Electron Device Lett., vol. EDL-4, pp. 191-193, 1983. [11] S.K. Lai, J. Lee, and V. K. Dham, “Electrical properties of nitrided-oxide systems for use in gate dielectrics and EEPROM,” in IEDM Tech. Dig., pp. 190-193, 1983. [12] M. M. Mosichi, S.C. Shatas, and K.C. Saraswat, “Rapid thermal oxidation and nitridation of silicon,” in Proc. 5th Int. Symp. Silicon Mat. Sci. Technol., ECS vol. 86-4, p. 379, 1986. [13] H.-H. Tsai, L.-C. Wu, C.-Y. Wu and. C. Hu, “The effect of thermal nitridation conditions on the reliability of thin nitrided oxides films,” IEEE Electron Device Lett., vol. EDL-8, pp. 143-145, 1987. [14] S.-T. Chang, N. M. Johnson, and S.A. Lyon, “Capture and tunnel emission of electrons by deep levels in ultrathin nitrided oxides on silicon,” Appl. Phys. Lett., vol. 44, pp. 316-318, 1984. [15] S. K. Lai, D. W. Dong, and A. Hartstein, “Effects of ammonia anneal on electron trappings in silicon dioxide,” J. Electrochem. Soc., vol. 129, p. 2042-2044, 1982. [16] S. S. Wong, S. H. Kwan, H. R. Grinolds, and W. G. Oldham, “Composition and electrical properties of nitrided-oxide and re-oxidized nitrided-oxide,” in Proc. Symp. Silicon Nitride Thin Ins. Films, ECS vol. 83-8, p. 346, 1983. [17] F.-C. Hsu and K.-Y. Chiu, “A comparative study of tunneling, substrate hot-electron and channel hot-electron injection induced degradation in thin-gate MOSFET’s,” in IEDM Tech. Dig., 1984, pp. 96-99. [18] R. Jayaraman, W. Yang, and C. G. sodini, “MOS electrical characteristics of low pressure re-oxidized nitrided-oxide,” in IEDM Tech. Dig., 1986, pp. 668-671. [19] F. L. Terry, Jr., P. W. Wyatt, M. L. Naiman, B. P. Mather, C. T. Kirk, and S. D. Senturia, “High-field electron capture and emission in nitrided oxides,” J. Appl. Phys., vol. 57, pp. 2036-2039, 1985. [20] T.W. Hickmott, “Annealing of surface in polycrystalline-silicon-gate capacitors,” J. Appl. Phys., vol. 48, pp.723-733, 1977. [21] T. Hori, H. Iwasaki and K.Tsuji, “Charge-Trapping Properties of Ultrathin Nitrided Oxides Prepared by Rapid Thermal Annealing,” IEEE Trans. Electron Devices, vol. 35, pp. 904-910, 1988. [22] C.T. Sah, “Origin of interface states and oxide charges generated by ionizing radiation,” IEEE Trans. Nucl. Sci., vol. NS-23, p. 1563, 1976. [23] P. Balk, “Hot carrier injection in oxides and the effect on MOSFET reliability,” in Solid State Devices, Institute Phys., Series No. 69, p. 63, 1983. [24] C. W. Gwyn, “Model for radiation-induced charge trapping and annealing in the oxide layer of MOS devices,” J. Appl. Phys., vol. 40, pp. 4886-4892, 1969. [25] T. P. Ma, “Oxide thickness dependence of electron-induced surface states in MOS structures,” Appl. Phys. Lett., vol. 27, pp. 615-617, 1975. [26] R. P. Vasquez and A. Madhukar, “Strain-dependent defect formation kinetics and a correlation between flat-band voltage and nitrogen distribution in thermally nitrided SiOXNY/Si structures,” Appl. Phys. Lett., vol. 47, pp. 998-1000, Nov. 1985. [27] A. Teramoto, H. Umeda, H. Tamura, Y. Nishida, H. Sayama, K. Terada, K. Kawase, Y. Ohno, and A. Shigetomi,” Precise control of nitrogen profiles and nitrogen bond states for highly reliable N2O-grown oxynitride,” J. Electrochem. Soc., vol. 147, pp. 1888-1892, 2000. [28] B. Maiti, P. J. Tobin, V. Misra, R. I. Hegde, K. G. Reid and C. Gelatos,”High performance 20Å NO oxynitride for gate dielectric in deep subquarter micron CMOS technology,” in IEDM Tech. Digest, pp. 651-654. 1997. [29] H. Fukuda, T. Arakawa, and S. Ohno, “Thin-gate SiO2 films formed by in situ multiple rapid thermal processing,” IEEE Trans. Electron Devices, vol. 39, pp. 127-133, 1992. [30] M.-Y. Hao, K. Lai, W.-M. Chen, and J. C. Lee, “Reliability characteristics and surface preparation technique for ultra-thin (33Å~87Å) oxides and oxynitrides” in IEDM Tech. Digest, pp. 601-604, 1994. [31] Y. Okada, P. J. Tobin, K. G. Reid, R. I. Hedge, B. Maiti and S. A. Ajuria, “Furnace grown gate oxynitride using nitric oxide (NO),” IEEE Trans Electron Device, vol. 41, pp. 1608-1613, 1994. [32] B. Maiti, D. Shum, W. M. Paulson, K.-M. Chang, P. J. Tobin, M. Weidner, and C. Kuo, “Highly reliable furnace-grown N2O tunnel oxide for a microcontroller with embedded flash EEPROM,” Reliability Physics Symposium, 1996. 34th Annual Proceedings, IEEE International, 30 April -2 May 1996, Page(s):55-60. [33] Ze-Qiang Yao, “The nature and distribution of nitrogen in silicon oxynitride grown on silicon in a nitric oxide ambient,” J. Appl. Phys., vol. 78, pp. 2906-2912, 1995. [34] H. Fukuda, T. Arakawa, and S. Ohno,”Highly reliable thin nitrided SiO2 films formed by rapid thermal processing in an N2O ambient,” Electron. Lett., vol. 26, pp. 1505-1506, 1990. [35] H. Hwang, W. Ting, B. Maiti, D.-L. kwong, and J. Lee, “Electrical characteristics of ultrathin oxynitride gate dielectric prepared by rapid thermal oxidation of Si in N2O,” Appl. Phys. Lett., vol. 57, pp. 1010-1011, 1990. [36] Z. Liu, H. J. Wann, P.K. Ko, C. Hu, and Y.C. Cheng, “Improvement of charge trapping characteristics of N2O annealed and reoxidized N2O annealed thin oxide,” IEEE Electron Device lett., vol. 13, pp.519-521, 1992. [37] H.R. Soleimani, A. Philipossian, and B. Doyle, “A Study of the growth kinetics of SiO2 in N2O,” in IEDM tech. Dig., pp.629-632, 1992. [38] Y. Okada, P. J. Tobin, R. I. Hegde, J. Liao, and P. Rushbrook, “Oxynitride gate dielectrics prepared by rapid thermal processing using mixtures of nitrous oxide and oxygen,” Appl. Phys. Lett., vol. 61, pp. 3163-3165, 1992. [39] G. W. Yoon, A. B. Joshi, J. Kim, G. Q. Lo, and D. L. Kwong, “Effects of growth temperature on TDDB characteristics of N2O grown oxides,” IEEE Electron Device Lett., vol. 13, pp. 606-608, 1992. [40] Y. Okada, P. J. Tobin, V. Lakhotia, W. A. Feil, S. A. Ajuria, and R. I. Hedge, “Relationship between growth conditions nitrogen profile and charge to breakdown of gate oxynitrides grown from pure N2O,” Appl. Phys. Lett., vol. 63, pp. 194-196, 1993. [41] P. J. Tobin, Y. Okada, S. A. Ajuria, V. Lakhotia, W. A. Feil, and R. I. Hegde, “Furnace formation of silicon oxynitride thin dielectrics in nitrous oxide N2O the role of nitric oxide NO,” J. Appl. Phys., vol. 75, pp.1811-1817, 1994. [42] Y. Okada, P. J. Tobin, V.Lakhotia, S.A.Ajuria, R.I.Hegde, J.C.Liao, P.Rushbrook, and L. J. Arias, J. Electrochem. Soc., vol. 140, L87, 1993. [43] M. L. Green, D. Brasen, K. W. Evans-Lutterodt, L. C. Feldman, K. Krisch, W. Lennard, H.-T. Tang, L. Manchanda, and M.-T. Tang, “Rapid thermal oxidation of silicon in N2O between 800 and 1200℃: Incorporated nitrogen and interfacial roughness,” Appl. Phys. Lett., vol. 65, pp. 848-850, 1994. [44] Z.H. Liu, J.T. Krick, H.J. Wann, P.K. Ko, C. Hu, and Y.C. Cheng, ”The effects of furnace N2O annealing on MOSFETs,” in IEDM Tech. Dig., pp.625-628, 1992. [45] E. C. Carr and R. A. Buharman , “Role of interfacial nitrogen in improving thin silicon oxide grown in N2O,” Appl. Phys. Lett., vol. 63, pp. 54-56, 1993. [46] N.S. Saks, M.Simons, D.M. Fleetwood, and M.E. Twigg, Proceedings of the Symposium on Silicon Nitride and Silicon Dioxide Thin Insulating Film, 1994 Meeting of the ECS, San Francisco, CA, May 22-27, 1994. [47] T. Yamamoto, T. Ogura, Y. Saito, K. Uwasawa, T. Tatsumi and T. Mogami, “An advanced 2.5nm Oxidized Nitride Gate Dielectric for Highly Reliably 0.25μm MOSFETs,” in Symp. on VLSI Technology Dig., pp. 45-46, 1997. [48] D. Wristers, L. K. Han, T. Chen, H. H. Wang, and D. L. Kwong, “Degradation of oxynitride gate dielectric reliability due to boron diffusion,” Appl. Phys. Lett., vol. 68, pp. 2094-2096, 1996. [49] C. H. Chen, Y. K. Fang, C. W. Yang, S. F. Ting, Y. S. Tsair, M. C. Yu, T. H. Hou, M. F. Wang, S. C. Chen, C. H. Yu, and M. S. Liang, “Thermally-enhanced remote plasma nitrided ultrathin (1.65nm) gate oxide with excellent performances in reduction of leakage current and boron diffusion,” IEEE Electron Device Lett., vol. 22, pp. 378-380, 2001. [50] T.-M. Pan, H.-S. Lin, M.-G. Chen, C.-H. Liu, and Y.-J. Chang, “Comparison of Electrical and Reliability Characteristics of Different 14 Å Oxynitride Gate Dielectrics,” IEEE Electron Device Lett., vol. 23, pp. 416-418, 2002. [51] H.-H. Tseng, Y. Jeon, P. Abramowitz, T.-Y. Luo, L. Hebert, J. J. Lee, J. Jiang, P. J. Tobin, G. C. F. Yeap, M. Moosa, J. Alvis, S. G. H. Anderson, N. Cave, T. C. Chua, A. Hegedus, G. Miner, J. Jeon, and A. Sultan, “Ultra-thin decoupled plasma nitridation (DPN) oxynitride gate dielectric for 80-nm advanced technology,” IEEE Electron Device Lett., vol. 23, pp. 704-706, 2002. [52] A. Velosol, F. N. Cubaynes, A. Rothschild, S. Mertensl, R. Degraevel, R. O’Connor, C. Olsen, L. Date, M. Schaeker’, C. Dachs and M. Jurczak, “Ultra-thin oxynitride gate dielectrics by pulsed-RF’ DPN for 65 nm general purpose CMOS applications,” European Solid-State Device Research, 2003. ESSDERC '03. 33rd Conference on 16-18 Sept. 2003 Page(s): 239-242. [53] S. F. Ting, Y. K. Fang, C. H. Chen, C. W. Yang, W. T. Hsieh, J. J. Ho, M. C. Yu, S. M. Jang, C. H. Yu, M. S. Liang, S. Chen, and R. Shih, “The effect of remote plasma nitridation on the integrity of the ultrathin gate dielectric films in 0.13 μm CMOS technology and beyond,” IEEE Electron Device Lett., vol. 22, pp. 327-329, 2001. [54] C.-H. Chen, Y.-K. Fang, S.-F. Ting, W.-T. Hsieh, C.-W. Yang, T.-H. Hsu, M.-C. Yu, T.-L. Lee, S.-C. Chen, C.-H. Yu, and M.-S. Liang, “Downscaling limit of equivalent oxide thickness in formation of ultrathin gate dielectric by thermal-enhanced remote plasma nitridation,” IEEE Trans. Electron Devices, vol. 49, pp. 840-846, 2002. [55] C. H.Chen, Y. K.Fang, C. W. Yang, S. F. Ting, Y. S. Tsair, M. F. Wang, Y. M. Lin, M. C. Yu, S. C. Chen, C. H. Chen, C. H. Yu, and M. S. Liang, “High-quality ultrathin (1.6nm) nitride/oxide stack gate dielectrics prepared by combining remote plasma nitridation and LPCVD technologies,” IEEE Electron Device Lett., vol. 22, pp.260-262, 2002. [56] M. Nagamine, H. Itoh, H. Satake, and A. Toriumi, “Radical oxygen (O*) process for highly-reliable SiO2 with higher film-density and smoother SiO2/Si interface,” in IEDM Tech. Dig., pp. 593-596, 1998. [57] T. P. Ma, “Making silicon nitride film a viable gate dielectric,” IEEE Trans. Electron Devices, vol. 45, pp. 680-690, 2002. [58] X.W. Wang, Y. Shi, and T.P. Ma, “Extending gate dielectric scaling limit by use of nitride or oxynitride,” in Symp. on VLSI Tech. Dig., pp. 109-110, 1995. [59] E. C. Carr, K. A. Ellis and R. A. Buhrman, “N depth profiles in thin SiO2 grown or processed in N2O: The role of atomic oxygen,” Appl. Phys. Lett., vol. 66, pp. 1492-1494, 1995. [60] N. S. Saks, D. I. Ma and W. B. Fowler, “Nitrogen depletion during oxidation in N2O,” Appl. Phys. Lett., vol. 67, pp. 374-376, 1995. [61] K. A. Ellis and R. A. Buhrman, “Furnace gas-phase chemistry of silicon oxynitridation in N2O,” Appl. Phys. Lett., vol. 68, pp. 1696-1698, 1996. [62] E. P. Gusev, H. C. Gustafsson and E. Garfunkel, “The composition of ultrathin silicon oxynitrides thermally grown in nitric oxide,” J. Appl. Phys., vol. 82, pp. 896-898, 1997. [63] E. P. Gusev, H.C. Lu, E. Garfunkel, and T. Gustafsson, “Nitrogen engineering of ultrathin oxynitrides by a thermal NO/O2/NO process,” J. Appl. Phys., vol. 84, pp. 2980-2982, 1998. [64] H. C. Lu, T. Gustafsson, E. P. Gusev and E. Garfunkel, “An isotopic labeling study of the growth of thin oxide films on Si (100),” Appl. Phys. Lett., vol. 67, pp. 1742-1744, 1995. [65] J.-J. Ganem, I. Trimaille, P. Andre, S. F. Rigo, F. C. Stedile, and I. J. R. Baumvol, “Diffusion of near surface defects during the thermal oxidation of silicon,” J. Appl. Phys., vol. 81, pp. 8109-8111, 1997. [66] H. C. Lu, E. P. Gusev, E. Garfunkel, B. W. Bush and T. Gustafsson, “Isotopic labeling studies of interactions of nitric oxide and nitrous oxide with ultrathin oxynitride layers on silicon,” J. Appl. Phys., vol. 87, pp. 1550-1555, 2000. [67] J.-J Ganem, S. Rigo, I. Trimaille, I. J. R. Baumvol and F. C. Stedile, “Dry oxidation mechanisms of thin dielectric films formed under N2O using isotopic tracing methods,” Appl. Phys. Lett., vol. 68, pp. 2366-2368, 1996. [68] I. J. R. Baumvol, F. C. Stedile, J.-J. Ganem, I. Trimaille and S. Rigo, “Nitrogen transport during rapid thermal growth of silicon oxynitride films in N2O,” Appl. Phys. Lett., vol. 69, pp. 2385-2387, 1996. [69] I. J. R. Baumvol, F. C. Stedile, J.-J. Ganem, I. Trimaille and S. Rigo, “Isotopic tracing during rapid thermal growth of silicon oxynitride films of Si in O2, NH3, and N2O,” Appl. Phys. Lett., vol. 70, pp. 2007-2009, 1997. [70] H. Du, R. E. Tressler and K. E. Spear, “Thermodynamics of the Si-N-O system and Kinetic Modelling of Oxidation of Si3N4,” J. Electrochem. Soc., vol. 136, pp. 3210-3215, 1989. [71] H. C. Lu, E. P. Gusev, T. Gustafsson and E. Garfunkel, “Effect of near-interfacial nitrogen on the oxidation behavior of ultrathin silicon oxynitrides,” J. Appl Phys., vol. 81, pp. 6992-6995, 1997. [72] S. Dimitrijev, D. Sweatman and H. B. Harrison, “Model for dielectric growth on silicon in a nitrous oxide environment,” Appl. Phys. Lett., vol. 62, pp. 1539-1540, 1993. [73] S. Dimitrijev and H. B. Harrison, “Modeling the growth of thin silicon oxide films on silicon,” J. Appl. Phys., vol. 80, pp. 2467-2470, 1996. [74] K. A. Ellis and R. A. Buhrman, “Nitrous oxide (N2O) processing for silicon oxynitride gate dielectrics,” IBM J. Res. Develop., vol. 43, pp. 287-300, 1999. [75] N. Kusunoki, T. Shimizu, H. Hazama and N. Aoki, “A novel Simulation Method for Oxynitridation and Re-Oxidation,” in Proc. Int. Conf. SISPAD, Seattle, pp. 139-142, 2000. [76] M. Alessandri, C. Clementi, B. Crivelli, G. Ghidini, F. Pellizzer, F. Martin, M. Imai, and H. Ikegawa, “Nitridation impact on thin oxide charge trapping,” Microelectron. Eng., vol. 36, pp. 211-214, 1997. [77] D. M. Brown, P.V. Gray, F.K. Heumann, H.R. Philipp, and E.A. Taft, “Properties of SixOyNz Films on Si,” J. Electrochem. Soc., vol. 115, no. 3, pp. 311-317, Mar. 1968. [78] E. P. Gusev, H-C. Lu, E. L. Garfunkel, T. Gustafsson and M. L. Green, “Growth and characterization of ultrathin nitrided silicon oxide films,” IBM J. Res. Develop., vol. 43, pp. 265-286, 1999. [79] T. M. Pan, T. F. Lei and T. S. Chao, “Robust ultrathin oxynitride dielectrics by NH3 nitridation and N2O RTA treatment,” IEEE Electron Devices Lett., vol. 21, pp. 378-380, 2000. [80] C. M. Lek, B. J. Cho and W. Y. Loh, “Effects of post-decoupled-plasma-nitridation annealing of ultra-thin gate oxide,” in Proc. 9th Int. conf. IPFA, Singapore, pp. 232-236, 2002. [81] R. Deaton and H. Z. Massoud, “Effect of thermally induced stresses on the rapid-thermal oxidation of silicon,” J. Appl. Phys., vol. 70, pp. 3588-3592, 1991. [82] F. K. Baker, J. R. Pfiester, T. C. Mele, H.-H. Tseng, P. J. Tobin, J. D. Hayden, C. D. Gunderson and L. C. Parrilo, “The influence of fluorine on the threshold voltage instabilities in p+ polysilicon gated p-channel MOSFETs,” in IEDM Tech. Dig., 1989, pp. 443-446. [83] J. M. Sung, C.-Y. Lu, M. L. Chen, S. J. Hillenius, W. S. Lindenberger, L. Manchanda, T. E. Smith and S. J. Wang, “Fluorine effect on boron diffusion of p+ gate devices [MOSFETs],” in IEDM Tech. Dig., 1989, pp. 447-450. [84] T. Hori and H. Iwasaki, “Ultra-thin re-oxidized nitrided-oxides prepared by rapid thermal processing,” in IEDM Tech. Dig., 1987, pp. 570-573. [85] Hori, T.; Iwasaki, H.; Tsuji, K., “Electrical and physical properties of ultrathin reoxidized nitrided oxides prepared by rapid thermal processing,” IEEE Trans. Electron Devices, vol. 36, pp. 340-350, 1989. [86] B. C. Lin, K. M. Chang, C. H. Lai, K.Y. Hsieh and J. M. Yao, “Reoxidation Behavior of High-Nitrogen Oxynitride Films after O2 and N2O Treatment,” Jpn. J. Appl. Phys., vol. 44, pp.2993-2994, 2005. [87] H. S. Momose, T. Morimoto, Y. Ozawa, K. Yamabe, and H. Iwai, “Electrical characteristics of rapid thermal nitrided-oxide gate n and p-MOSFET's with less than 1 atom% nitrogen concentration,” IEEE Trans. Electron Devices, vol. 41, pp. 546-552, 1994. [88] B. Y. Kim, I. M. Liu, H. F. Luan, M. Gardner, J. Fulford and D. L. Kwong, “Impact of boron penetration on gate oxide reliability and device lifetime in P+poly PMOSFETs,” presented at IEDM’97, Washington D.C., 1997, pp.182-187. [89] R. Moazzami and C. Hu, ”Stress-induced current in thin silicon dioxide films,” IEDM Tech. Dig., 1992, pp. 139-142. [90] D. J. Dumin, K. J. Dickerson, M. D. Hall and G. A. Brown, “Polarity dependence of thin oxide wearout,” Proc. IEEE Int. Reliability Physics Symp. (IRPS), 1989, pp. 28-33. [91] S.-H. Lo, D. A. Buchanan and Y. Taur, “Modeling and characterization of quantization, polysilicon depletion, and direct tunneling effects,” IBM J. Res. Dev., vol. 43, pp. 327-337, 1999. [92] Y. C. King, Chenming Hu, H. Fujioka and S. Kamohara, “Small signal electron charge centroid model for quantization of inversion layer in a metal-on-insulator field-effect transistor,” Appl. Phys. Lett., vol. 72, pp. 3476-3478, 1998. [93] J. H. Stathis and D. J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage,” in IEDM Tech. Dig., 1998, pp. 167-170.
|