跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴瓊惠
研究生(外文):Chiung-Hui Lai
論文名稱:高含氮量的極薄含氮氧化層的再氧化行為以及高氮靠近含氮氧化層表面之介電層技術開發
論文名稱(外文):The Study of Reoxidation Mechanism on High Nitrogen Content Ultrathin Oxynitirde and Novel Film Process Development
指導教授:張國明林柏村林柏村引用關係
指導教授(外文):Kow-Ming ChangBo-Chun Lin
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:105
中文關鍵詞:含氮氧化層原子氧熱誘發應力放熱上下跳動N2O
外文關鍵詞:oxynitrideatomic oxygenthermally induced stressexothermiczig-zagnitrous oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討高含氮量的極薄含氮氧化層的再氧化行為,同時開發在氧化層表面形成具有高含氮量分佈的極薄含氮氧化層的製程。
極薄、高含氮的氮氧化層在快速升溫系統(RTP)下,配合氧化亞氮(N2O)以及純氧(O2)輪流再氧化的結果,發現到:(1) 不同氮化溫度下形成的氮氧化層,經由N2O以及O2再氧化結果,發現N2O的再氧化速率與氮氧化層的氮化溫度並無明顯的關聯,然而O2的再氧化的速率卻會隨著氮氧化層的氮化溫度而有所差異-氮化溫度越高,再氧化速率越慢-這暗示意味著可藉由選用適當的氮化溫度來達成控制成長極薄含氮氧化層的厚度; (2) 以N2O進行再氧化的實驗中,發現氧化層厚度呈現放射狀不均勻的現象,其位於晶片中間的部份較薄,而位於邊緣的部份較厚;(3) 輪流交互使用N2O以及O2進行對高含氮的極薄氧化層的再氧化過程中,當高含氮的極薄氧化層的厚度大約小於60埃的範圍內,N2O的再氧化速率在晶片的同一位置上是固定不變,但在其他位置上卻有所不同。氧化的次數增多時,以O2進行再氧化的氧化速度會呈現加速動作。對於上述多種現象的解釋機制如下:
RTP下所成長之氧化層其厚度先天就呈現中間薄而邊緣厚,此乃由於熱應力所致,尤其當使用N2O作為氧化劑時,因N2O的放熱反應結合RTP的熱應力效應,更加劇氧化層厚度放射狀的不均勻現象。此外由於N2O的放熱反應易使N2O所產生的原子氧(atomic oxygen)在位於晶片中間的含量較低,加上原子氧的氧化行為不受限於氧化層內的含氮量,因此在含氮氧化層的厚度大約小於60埃時,其氧化速度幾乎是固定的。然而原子氧具有移走含氮氧化層中的氮的能力,因此當氧化次數增多時,氮原子的逐漸空乏促成後續以O2執行再氧化時,其氧化層成長速率會隨之增快。
高含氮量分佈的極薄含氮氧化層的製程建立在將化學氧化層(chemical oxide)先以NH3作氮化(NH3 nitridation)處理,隨即以O2作再氧化處理,藉此可將高濃度的氮原子累積在靠近含氮氧化層的表面處。其特色在於能以低的熱預算(low thermal budget)得到高品質的極薄含氮氧化層,同時兼具低介面陷位密度、低電性應力誘發漏電流效應、高時依性介電崩潰以及良好的抗硼穿透的能力等特性。本製程不僅簡單且匹配於現行的製程技術,對於閘極介電層製程開發的半導體業界,將會有極大的參考價值。
In this dissertation, we report that reoxidation behavior of high-nitrogen ultrathin oxynitride in rapid thermal process (RTP). Simultaneously, we develop a novel process to grow robust ultrathin oxynitride with high nitrogen content close to its surface.
Reoxidation experiments on high-nitrogen ultrathin oxynitride, which is formed by thermally nitridizing a chemical silicon oxide with pure ammonia, are conducted using an alternation of nitrous oxide and oxygen gas in rapid thermal oxidation (RTO). The new finding herein is the zig-zag characteristic of the oxidation rate by O2 and N2O. It is clear that the N2O oxidation rate is almost independent of the concentration of nitrogen in oxynitride through out the rapid thermal oxidation process, but the O2 oxidation rate is decreased as nitrogen content increased. Furthermore, non-uniform thickness of oxynitride was also observed after N2O gas treatment. Particularly, the thickness is thinner in the center part of the wafer instead of at the edge of the wafer. It should be noted that O2 gas does not produce the same results. Any conventional oxidation model based on simple bulk diffusion and/or surface reaction mechanisms simply would not do it. The non-uniformity of N2O gas reoxidation can be explained by combining a mechanism with radial thermally induced stress, exothermic N2O oxidation and depletion of atomic oxygen.
Finally, we have proposed an approach for growing robust ultrathin oxynitride, including NH3 nitridation of chemical oxide and reoxidation with O2. In this method, we obtain oxynitride with high nitrogen concentration (≈13 at.%) on the top and low interface state density (Dit=2×1010 cm-2 eV-1). The films demonstrate excellent properties in terms of low leakage current, high endurance in stressing and superior boron diffusion blocking behavior. This process does not involve any additional capital equipment. In addition, it obtains high-quality oxynitride film with low thermal budget. Most importantly, this process is simple and fully compatible with current process technology. It would be important and interesting to the process engineers who engaged in the field of gate dielectrics.
Contents

Chinese Abstract………………………………………………………..i
English Abstract…………………………………………...iii
Acknowledgements………………………………………………v
Contents………………………………………………..…….vi
Figure Captions……………………………………….…..ix

Chapter 1 Introduction……………………………………….1

1.1 Background and Motivation of Ultrathin Oxynitride….....2
1.2 Processing Techniques for Silicon Oxynitride
1.2.1 Nitridation of oxide with NH3 and reoxidation of nitrided-oxide…………..………………..……….6
1.2.2 Oxynitride growth with nitrous oxide (N2O) or nitric oxide (NO)…………….………………….16
1.2.3 Reoxidation of nitride with H2O………………..18
1.2.4 Remote Plasma Nitridation (RPN) or Decoupled Plasma Nitridation (DPN) technique……….…..23
1.2.5 Jet Vapor Deposition (JVD) technique….….…..24
1.3 The mechanism of oxidation in Reoxidation nitrided-oxide
1.3.1 Nitrogen depletion in reoxidation nitrided-oxide.24
1.3.2 Mechanism of reoxidation of ultrathin oxide…...27
1.4 Thesis Organization……………………………………..34

Chapter 2 Reoxidation Behavior of High-Nitrogen Oxynitride Films after O2 and N2O Treatment……………………………..35

2.1 Introduction………………… ………35
2.2 A novel process for forming an ultra-thin oxynitride film with high nitrogen topping……36
2.3 Experiment…………… …………….37
2.4 Results and Discussion…………….38
2.5 Summary………………………………..51

Chapter 3 Reoxidation thickness nonuniformities due to thermally induced stress effect and the atomic oxygen distribution in RTP with N2O……………………………………………..52

3.1 Introduction………………………… .52
3.2 Experiment……………………………..54
3.3 Results and Discussion………… …55
3.4 Summary…………………………… …..65

Chapter 4 Robust Ultrathin Oxynitride with High Nitrogen Diffusion Barrier near its Surface Formed by NH3 Nitridation of Chemical Oxide and Reoxidation with O2……………….67

4.1 Introduction…………………………..67
4.2 Experiment…………………………….…69
4.3 Results and Discussion…………… .72
4.4 Summary……………………………………82

Chapter 5 Summary and Conclusions and Future Work….………..84

Chapter 6 Future Prospects………….………… ..86

References………………………………….………… ..88

Vita………………………….…………..............103

Publication Lists………………….………….…… 104
[1] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of Ion-Implanted MOSFETs with Very Small Physical Dimensions,” IEEE J. Solid-State Circuits, vol. SC-9, pp. 256-268, 1974.
[2] K. F. Schuegraf and C. Hu, “Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation,” IEEE Trans. Electron Devices, vol. 41, pp. 761-767, 1994.
[3] B. Neri, P. Olivo, R. Saletti, and M. Signoretta, “Dielectric breakdown and reliability of MOS microstructures: Traditional characterization and low-frequency noise measurements,” Microelectron. Reliab., vol. 35, pp. 529-537, 1995.
[4] J. R. Pfiester, L. C. Parrillo, and F. K. Baker, “A physical model for boron penetration through thin gate oxides from p+ polysilicon gates,” IEEE Electron Device Lett., vol. 11, pp. 247-249, 1990.
[5] H.-H. Tseng, M. Orlowski, P. J. Tobin, and R. L. Hance, “Fluorine diffusion on a polysilicon grain noundary network in relation to boron penetration from p+ gates,” IEEE Electron Device Lett., vol. 13, pp. 14-16, 1992.
[6] K. S. Krisch, M. L. Green, F. H. Baumann, D. Brasen, L. C. Feldman and L. Manchanda,“Thickness dependence of boron peretration through O2 and N2O-grown gate oxides and its impact on threshold voltage variation,“ IEEE Trans. Electron Devices, vol. 43, pp. 982-990, 1996.
[7] Aoyama, T. Suzuki, K. Tashiro, H. Tada and Y. Arimoto, “Flat-band voltage shifts in P-MOS devices caused by carrier activation in p+-Polycrystalline silicon and boron penetration,” in IEDM Tech. Dig., 1997, pp. 627-630.
[8] K.S. Krisch, L. Manchanda, F.H. Baumann, M.L. Green, D. Brasen, L.C. Feldman, A. Ourmazd, “Impact of Boron Diffusion through O2 and N2O Gate Dielectrics on the Process Margin of Dual-Poly Low Power CMOS,” in IEDM Tech. Dig., 1994, pp. 325-328.
[9] T. Ito, T. Nakamura and H. Ishikawa, “Advantages of thermal nitride and nitroxide gate films in VLSI process,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 128-132, 1982.
[10] F. L. Terry, Jr., R. J. Aucoin, M. L. Naiman, and S. D. Senturia, “Radiation effects in nitrided oxides,” IEEE Electron Device Lett., vol. EDL-4, pp. 191-193, 1983.
[11] S.K. Lai, J. Lee, and V. K. Dham, “Electrical properties of nitrided-oxide systems for use in gate dielectrics and EEPROM,” in IEDM Tech. Dig., pp. 190-193, 1983.
[12] M. M. Mosichi, S.C. Shatas, and K.C. Saraswat, “Rapid thermal oxidation and nitridation of silicon,” in Proc. 5th Int. Symp. Silicon Mat. Sci. Technol., ECS vol. 86-4, p. 379, 1986.
[13] H.-H. Tsai, L.-C. Wu, C.-Y. Wu and. C. Hu, “The effect of thermal nitridation conditions on the reliability of thin nitrided oxides films,” IEEE Electron Device Lett., vol. EDL-8, pp. 143-145, 1987.
[14] S.-T. Chang, N. M. Johnson, and S.A. Lyon, “Capture and tunnel emission of electrons by deep levels in ultrathin nitrided oxides on silicon,” Appl. Phys. Lett., vol. 44, pp. 316-318, 1984.
[15] S. K. Lai, D. W. Dong, and A. Hartstein, “Effects of ammonia anneal on electron trappings in silicon dioxide,” J. Electrochem. Soc., vol. 129, p. 2042-2044, 1982.
[16] S. S. Wong, S. H. Kwan, H. R. Grinolds, and W. G. Oldham, “Composition and electrical properties of nitrided-oxide and re-oxidized nitrided-oxide,” in Proc. Symp. Silicon Nitride Thin Ins. Films, ECS vol. 83-8, p. 346, 1983.
[17] F.-C. Hsu and K.-Y. Chiu, “A comparative study of tunneling, substrate hot-electron and channel hot-electron injection induced degradation in thin-gate MOSFET’s,” in IEDM Tech. Dig., 1984, pp. 96-99.
[18] R. Jayaraman, W. Yang, and C. G. sodini, “MOS electrical characteristics of low pressure re-oxidized nitrided-oxide,” in IEDM Tech. Dig., 1986, pp. 668-671.
[19] F. L. Terry, Jr., P. W. Wyatt, M. L. Naiman, B. P. Mather, C. T. Kirk, and S. D. Senturia, “High-field electron capture and emission in nitrided oxides,” J. Appl. Phys., vol. 57, pp. 2036-2039, 1985.
[20] T.W. Hickmott, “Annealing of surface in polycrystalline-silicon-gate capacitors,” J. Appl. Phys., vol. 48, pp.723-733, 1977.
[21] T. Hori, H. Iwasaki and K.Tsuji, “Charge-Trapping Properties of Ultrathin Nitrided Oxides Prepared by Rapid Thermal Annealing,” IEEE Trans. Electron Devices, vol. 35, pp. 904-910, 1988.
[22] C.T. Sah, “Origin of interface states and oxide charges generated by ionizing radiation,” IEEE Trans. Nucl. Sci., vol. NS-23, p. 1563, 1976.
[23] P. Balk, “Hot carrier injection in oxides and the effect on MOSFET reliability,” in Solid State Devices, Institute Phys., Series No. 69, p. 63, 1983.
[24] C. W. Gwyn, “Model for radiation-induced charge trapping and annealing in the oxide layer of MOS devices,” J. Appl. Phys., vol. 40, pp. 4886-4892, 1969.
[25] T. P. Ma, “Oxide thickness dependence of electron-induced surface states in MOS structures,” Appl. Phys. Lett., vol. 27, pp. 615-617, 1975.
[26] R. P. Vasquez and A. Madhukar, “Strain-dependent defect formation kinetics and a correlation between flat-band voltage and nitrogen distribution in thermally nitrided SiOXNY/Si structures,” Appl. Phys. Lett., vol. 47, pp. 998-1000, Nov. 1985.
[27] A. Teramoto, H. Umeda, H. Tamura, Y. Nishida, H. Sayama, K. Terada, K. Kawase, Y. Ohno, and A. Shigetomi,” Precise control of nitrogen profiles and nitrogen bond states for highly reliable N2O-grown oxynitride,” J. Electrochem. Soc., vol. 147, pp. 1888-1892, 2000.
[28] B. Maiti, P. J. Tobin, V. Misra, R. I. Hegde, K. G. Reid and C. Gelatos,”High performance 20Å NO oxynitride for gate dielectric in deep subquarter micron CMOS technology,” in IEDM Tech. Digest, pp. 651-654. 1997.
[29] H. Fukuda, T. Arakawa, and S. Ohno, “Thin-gate SiO2 films formed by in situ multiple rapid thermal processing,” IEEE Trans. Electron Devices, vol. 39, pp. 127-133, 1992.
[30] M.-Y. Hao, K. Lai, W.-M. Chen, and J. C. Lee, “Reliability characteristics and surface preparation technique for ultra-thin (33Å~87Å) oxides and oxynitrides” in IEDM Tech. Digest, pp. 601-604, 1994.
[31] Y. Okada, P. J. Tobin, K. G. Reid, R. I. Hedge, B. Maiti and S. A. Ajuria, “Furnace grown gate oxynitride using nitric oxide (NO),” IEEE Trans Electron Device, vol. 41, pp. 1608-1613, 1994.
[32] B. Maiti, D. Shum, W. M. Paulson, K.-M. Chang, P. J. Tobin, M. Weidner, and C. Kuo, “Highly reliable furnace-grown N2O tunnel oxide for a microcontroller with embedded flash EEPROM,” Reliability Physics Symposium, 1996. 34th Annual Proceedings, IEEE International, 30 April -2 May 1996, Page(s):55-60.
[33] Ze-Qiang Yao, “The nature and distribution of nitrogen in silicon oxynitride grown on silicon in a nitric oxide ambient,” J. Appl. Phys., vol. 78, pp. 2906-2912, 1995.
[34] H. Fukuda, T. Arakawa, and S. Ohno,”Highly reliable thin nitrided SiO2 films formed by rapid thermal processing in an N2O ambient,” Electron. Lett., vol. 26, pp. 1505-1506, 1990.
[35] H. Hwang, W. Ting, B. Maiti, D.-L. kwong, and J. Lee, “Electrical characteristics of ultrathin oxynitride gate dielectric prepared by rapid thermal oxidation of Si in N2O,” Appl. Phys. Lett., vol. 57, pp. 1010-1011, 1990.
[36] Z. Liu, H. J. Wann, P.K. Ko, C. Hu, and Y.C. Cheng, “Improvement of charge trapping characteristics of N2O annealed and reoxidized N2O annealed thin oxide,” IEEE Electron Device lett., vol. 13, pp.519-521, 1992.
[37] H.R. Soleimani, A. Philipossian, and B. Doyle, “A Study of the growth kinetics of SiO2 in N2O,” in IEDM tech. Dig., pp.629-632, 1992.
[38] Y. Okada, P. J. Tobin, R. I. Hegde, J. Liao, and P. Rushbrook, “Oxynitride gate dielectrics prepared by rapid thermal processing using mixtures of nitrous oxide and oxygen,” Appl. Phys. Lett., vol. 61, pp. 3163-3165, 1992.
[39] G. W. Yoon, A. B. Joshi, J. Kim, G. Q. Lo, and D. L. Kwong, “Effects of growth temperature on TDDB characteristics of N2O grown oxides,” IEEE Electron Device Lett., vol. 13, pp. 606-608, 1992.
[40] Y. Okada, P. J. Tobin, V. Lakhotia, W. A. Feil, S. A. Ajuria, and R. I. Hedge, “Relationship between growth conditions nitrogen profile and charge to breakdown of gate oxynitrides grown from pure N2O,” Appl. Phys. Lett., vol. 63, pp. 194-196, 1993.
[41] P. J. Tobin, Y. Okada, S. A. Ajuria, V. Lakhotia, W. A. Feil, and R. I. Hegde, “Furnace formation of silicon oxynitride thin dielectrics in nitrous oxide N2O the role of nitric oxide NO,” J. Appl. Phys., vol. 75, pp.1811-1817, 1994.
[42] Y. Okada, P. J. Tobin, V.Lakhotia, S.A.Ajuria, R.I.Hegde, J.C.Liao, P.Rushbrook, and L. J. Arias, J. Electrochem. Soc., vol. 140, L87, 1993.
[43] M. L. Green, D. Brasen, K. W. Evans-Lutterodt, L. C. Feldman, K. Krisch, W. Lennard, H.-T. Tang, L. Manchanda, and M.-T. Tang, “Rapid thermal oxidation of silicon in N2O between 800 and 1200℃: Incorporated nitrogen and interfacial roughness,” Appl. Phys. Lett., vol. 65, pp. 848-850, 1994.
[44] Z.H. Liu, J.T. Krick, H.J. Wann, P.K. Ko, C. Hu, and Y.C. Cheng, ”The effects of furnace N2O annealing on MOSFETs,” in IEDM Tech. Dig., pp.625-628, 1992.
[45] E. C. Carr and R. A. Buharman , “Role of interfacial nitrogen in improving thin silicon oxide grown in N2O,” Appl. Phys. Lett., vol. 63, pp. 54-56, 1993.
[46] N.S. Saks, M.Simons, D.M. Fleetwood, and M.E. Twigg, Proceedings of the Symposium on Silicon Nitride and Silicon Dioxide Thin Insulating Film, 1994 Meeting of the ECS, San Francisco, CA, May 22-27, 1994.
[47] T. Yamamoto, T. Ogura, Y. Saito, K. Uwasawa, T. Tatsumi and T. Mogami, “An advanced 2.5nm Oxidized Nitride Gate Dielectric for Highly Reliably 0.25μm MOSFETs,” in Symp. on VLSI Technology Dig., pp. 45-46, 1997.
[48] D. Wristers, L. K. Han, T. Chen, H. H. Wang, and D. L. Kwong, “Degradation of oxynitride gate dielectric reliability due to boron diffusion,” Appl. Phys. Lett., vol. 68, pp. 2094-2096, 1996.
[49] C. H. Chen, Y. K. Fang, C. W. Yang, S. F. Ting, Y. S. Tsair, M. C. Yu, T. H. Hou, M. F. Wang, S. C. Chen, C. H. Yu, and M. S. Liang, “Thermally-enhanced remote plasma nitrided ultrathin (1.65nm) gate oxide with excellent performances in reduction of leakage current and boron diffusion,” IEEE Electron Device Lett., vol. 22, pp. 378-380, 2001.
[50] T.-M. Pan, H.-S. Lin, M.-G. Chen, C.-H. Liu, and Y.-J. Chang, “Comparison of Electrical and Reliability Characteristics of Different 14 Å Oxynitride Gate Dielectrics,” IEEE Electron Device Lett., vol. 23, pp. 416-418, 2002.
[51] H.-H. Tseng, Y. Jeon, P. Abramowitz, T.-Y. Luo, L. Hebert, J. J. Lee, J. Jiang, P. J. Tobin, G. C. F. Yeap, M. Moosa, J. Alvis, S. G. H. Anderson, N. Cave, T. C. Chua, A. Hegedus, G. Miner, J. Jeon, and A. Sultan, “Ultra-thin decoupled plasma nitridation (DPN) oxynitride gate dielectric for 80-nm advanced technology,” IEEE Electron Device Lett., vol. 23, pp. 704-706, 2002.
[52] A. Velosol, F. N. Cubaynes, A. Rothschild, S. Mertensl, R. Degraevel, R. O’Connor, C. Olsen, L. Date, M. Schaeker’, C. Dachs and M. Jurczak, “Ultra-thin oxynitride gate dielectrics by pulsed-RF’ DPN for 65 nm general purpose CMOS applications,” European Solid-State Device Research, 2003. ESSDERC '03. 33rd Conference on 16-18 Sept. 2003 Page(s): 239-242.
[53] S. F. Ting, Y. K. Fang, C. H. Chen, C. W. Yang, W. T. Hsieh, J. J. Ho, M. C. Yu, S. M. Jang, C. H. Yu, M. S. Liang, S. Chen, and R. Shih, “The effect of remote plasma nitridation on the integrity of the ultrathin gate dielectric films in 0.13 μm CMOS technology and beyond,” IEEE Electron Device Lett., vol. 22, pp. 327-329, 2001.
[54] C.-H. Chen, Y.-K. Fang, S.-F. Ting, W.-T. Hsieh, C.-W. Yang, T.-H. Hsu, M.-C. Yu, T.-L. Lee, S.-C. Chen, C.-H. Yu, and M.-S. Liang, “Downscaling limit of equivalent oxide thickness in formation of ultrathin gate dielectric by thermal-enhanced remote plasma nitridation,” IEEE Trans. Electron Devices, vol. 49, pp. 840-846, 2002.
[55] C. H.Chen, Y. K.Fang, C. W. Yang, S. F. Ting, Y. S. Tsair, M. F. Wang, Y. M. Lin, M. C. Yu, S. C. Chen, C. H. Chen, C. H. Yu, and M. S. Liang, “High-quality ultrathin (1.6nm) nitride/oxide stack gate dielectrics prepared by combining remote plasma nitridation and LPCVD technologies,” IEEE Electron Device Lett., vol. 22, pp.260-262, 2002.
[56] M. Nagamine, H. Itoh, H. Satake, and A. Toriumi, “Radical oxygen (O*) process for highly-reliable SiO2 with higher film-density and smoother SiO2/Si interface,” in IEDM Tech. Dig., pp. 593-596, 1998.
[57] T. P. Ma, “Making silicon nitride film a viable gate dielectric,” IEEE Trans. Electron Devices, vol. 45, pp. 680-690, 2002.
[58] X.W. Wang, Y. Shi, and T.P. Ma, “Extending gate dielectric scaling limit by use of nitride or oxynitride,” in Symp. on VLSI Tech. Dig., pp. 109-110, 1995.
[59] E. C. Carr, K. A. Ellis and R. A. Buhrman, “N depth profiles in thin SiO2 grown or processed in N2O: The role of atomic oxygen,” Appl. Phys. Lett., vol. 66, pp. 1492-1494, 1995.
[60] N. S. Saks, D. I. Ma and W. B. Fowler, “Nitrogen depletion during oxidation in N2O,” Appl. Phys. Lett., vol. 67, pp. 374-376, 1995.
[61] K. A. Ellis and R. A. Buhrman, “Furnace gas-phase chemistry of silicon oxynitridation in N2O,” Appl. Phys. Lett., vol. 68, pp. 1696-1698, 1996.
[62] E. P. Gusev, H. C. Gustafsson and E. Garfunkel, “The composition of ultrathin silicon oxynitrides thermally grown in nitric oxide,” J. Appl. Phys., vol. 82, pp. 896-898, 1997.
[63] E. P. Gusev, H.C. Lu, E. Garfunkel, and T. Gustafsson, “Nitrogen engineering of ultrathin oxynitrides by a thermal NO/O2/NO process,” J. Appl. Phys., vol. 84, pp. 2980-2982, 1998.
[64] H. C. Lu, T. Gustafsson, E. P. Gusev and E. Garfunkel, “An isotopic labeling study of the growth of thin oxide films on Si (100),” Appl. Phys. Lett., vol. 67, pp. 1742-1744, 1995.
[65] J.-J. Ganem, I. Trimaille, P. Andre, S. F. Rigo, F. C. Stedile, and I. J. R. Baumvol, “Diffusion of near surface defects during the thermal oxidation of silicon,” J. Appl. Phys., vol. 81, pp. 8109-8111, 1997.
[66] H. C. Lu, E. P. Gusev, E. Garfunkel, B. W. Bush and T. Gustafsson, “Isotopic labeling studies of interactions of nitric oxide and nitrous oxide with ultrathin oxynitride layers on silicon,” J. Appl. Phys., vol. 87, pp. 1550-1555, 2000.
[67] J.-J Ganem, S. Rigo, I. Trimaille, I. J. R. Baumvol and F. C. Stedile, “Dry oxidation mechanisms of thin dielectric films formed under N2O using isotopic tracing methods,” Appl. Phys. Lett., vol. 68, pp. 2366-2368, 1996.
[68] I. J. R. Baumvol, F. C. Stedile, J.-J. Ganem, I. Trimaille and S. Rigo, “Nitrogen transport during rapid thermal growth of silicon oxynitride films in N2O,” Appl. Phys. Lett., vol. 69, pp. 2385-2387, 1996.
[69] I. J. R. Baumvol, F. C. Stedile, J.-J. Ganem, I. Trimaille and S. Rigo, “Isotopic tracing during rapid thermal growth of silicon oxynitride films of Si in O2, NH3, and N2O,” Appl. Phys. Lett., vol. 70, pp. 2007-2009, 1997.
[70] H. Du, R. E. Tressler and K. E. Spear, “Thermodynamics of the Si-N-O system and Kinetic Modelling of Oxidation of Si3N4,” J. Electrochem. Soc., vol. 136, pp. 3210-3215, 1989.
[71] H. C. Lu, E. P. Gusev, T. Gustafsson and E. Garfunkel, “Effect of near-interfacial nitrogen on the oxidation behavior of ultrathin silicon oxynitrides,” J. Appl Phys., vol. 81, pp. 6992-6995, 1997.
[72] S. Dimitrijev, D. Sweatman and H. B. Harrison, “Model for dielectric growth on silicon in a nitrous oxide environment,” Appl. Phys. Lett., vol. 62, pp. 1539-1540, 1993.
[73] S. Dimitrijev and H. B. Harrison, “Modeling the growth of thin silicon oxide films on silicon,” J. Appl. Phys., vol. 80, pp. 2467-2470, 1996.
[74] K. A. Ellis and R. A. Buhrman, “Nitrous oxide (N2O) processing for silicon oxynitride gate dielectrics,” IBM J. Res. Develop., vol. 43, pp. 287-300, 1999.
[75] N. Kusunoki, T. Shimizu, H. Hazama and N. Aoki, “A novel Simulation Method for Oxynitridation and Re-Oxidation,” in Proc. Int. Conf. SISPAD, Seattle, pp. 139-142, 2000.
[76] M. Alessandri, C. Clementi, B. Crivelli, G. Ghidini, F. Pellizzer, F. Martin, M. Imai, and H. Ikegawa, “Nitridation impact on thin oxide charge trapping,” Microelectron. Eng., vol. 36, pp. 211-214, 1997.
[77] D. M. Brown, P.V. Gray, F.K. Heumann, H.R. Philipp, and E.A. Taft, “Properties of SixOyNz Films on Si,” J. Electrochem. Soc., vol. 115, no. 3, pp. 311-317, Mar. 1968.
[78] E. P. Gusev, H-C. Lu, E. L. Garfunkel, T. Gustafsson and M. L. Green, “Growth and characterization of ultrathin nitrided silicon oxide films,” IBM J. Res. Develop., vol. 43, pp. 265-286, 1999.
[79] T. M. Pan, T. F. Lei and T. S. Chao, “Robust ultrathin oxynitride dielectrics by NH3 nitridation and N2O RTA treatment,” IEEE Electron Devices Lett., vol. 21, pp. 378-380, 2000.
[80] C. M. Lek, B. J. Cho and W. Y. Loh, “Effects of post-decoupled-plasma-nitridation annealing of ultra-thin gate oxide,” in Proc. 9th Int. conf. IPFA, Singapore, pp. 232-236, 2002.
[81] R. Deaton and H. Z. Massoud, “Effect of thermally induced stresses on the rapid-thermal oxidation of silicon,” J. Appl. Phys., vol. 70, pp. 3588-3592, 1991.
[82] F. K. Baker, J. R. Pfiester, T. C. Mele, H.-H. Tseng, P. J. Tobin, J. D. Hayden, C. D. Gunderson and L. C. Parrilo, “The influence of fluorine on the threshold voltage instabilities in p+ polysilicon gated p-channel MOSFETs,” in IEDM Tech. Dig., 1989, pp. 443-446.
[83] J. M. Sung, C.-Y. Lu, M. L. Chen, S. J. Hillenius, W. S. Lindenberger, L. Manchanda, T. E. Smith and S. J. Wang, “Fluorine effect on boron diffusion of p+ gate devices [MOSFETs],” in IEDM Tech. Dig., 1989, pp. 447-450.
[84] T. Hori and H. Iwasaki, “Ultra-thin re-oxidized nitrided-oxides prepared by rapid thermal processing,” in IEDM Tech. Dig., 1987, pp. 570-573.
[85] Hori, T.; Iwasaki, H.; Tsuji, K., “Electrical and physical properties of ultrathin reoxidized nitrided oxides prepared by rapid thermal processing,” IEEE Trans. Electron Devices, vol. 36, pp. 340-350, 1989.
[86] B. C. Lin, K. M. Chang, C. H. Lai, K.Y. Hsieh and J. M. Yao, “Reoxidation Behavior of High-Nitrogen Oxynitride Films after O2 and N2O Treatment,” Jpn. J. Appl. Phys., vol. 44, pp.2993-2994, 2005.
[87] H. S. Momose, T. Morimoto, Y. Ozawa, K. Yamabe, and H. Iwai, “Electrical characteristics of rapid thermal nitrided-oxide gate n and p-MOSFET's with less than 1 atom% nitrogen concentration,” IEEE Trans. Electron Devices, vol. 41, pp. 546-552, 1994.
[88] B. Y. Kim, I. M. Liu, H. F. Luan, M. Gardner, J. Fulford and D. L. Kwong, “Impact of boron penetration on gate oxide reliability and device lifetime in P+poly PMOSFETs,” presented at IEDM’97, Washington D.C., 1997, pp.182-187.
[89] R. Moazzami and C. Hu, ”Stress-induced current in thin silicon dioxide films,” IEDM Tech. Dig., 1992, pp. 139-142.
[90] D. J. Dumin, K. J. Dickerson, M. D. Hall and G. A. Brown, “Polarity dependence of thin oxide wearout,” Proc. IEEE Int. Reliability Physics Symp. (IRPS), 1989, pp. 28-33.
[91] S.-H. Lo, D. A. Buchanan and Y. Taur, “Modeling and characterization of quantization, polysilicon depletion, and direct tunneling effects,” IBM J. Res. Dev., vol. 43, pp. 327-337, 1999.
[92] Y. C. King, Chenming Hu, H. Fujioka and S. Kamohara, “Small signal electron charge centroid model for quantization of inversion layer in a metal-on-insulator field-effect transistor,” Appl. Phys. Lett., vol. 72, pp. 3476-3478, 1998.
[93] J. H. Stathis and D. J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage,” in IEDM Tech. Dig., 1998, pp. 167-170.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top