跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃昱文
研究生(外文):Yu-Wen Huang
論文名稱:銅-鎳奈米複合材料的製作及其在低功率電磁微致動元件上的應用
論文名稱(外文):Synthesis and Device Fabrication of Cu/Ni Nanocomposite for Low Power Magnetic Microactuation
指導教授:鄭裕庭
指導教授(外文):Y.T. Cheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:33
中文關鍵詞:銅鎳複合材料微型喇吧
外文關鍵詞:electroplated Cu/Ni magnetic nanocompositemicrospeaker
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
先前已經發表過在鎳基材中攙入二氧化矽、鑽石、碳管等奈米微粒來改變鎳金屬的機、電性質。同時我們也發表過在銅基材中攙入磁性粉末來使原本表現為逆磁的銅基材轉變為鐵磁性的銅-CoFe2O4奈米複合材料。在本論文中,我們將粒徑25~50nm的奈米鎳粉末以電鍍的方式將其鍍入於銅基材中,並將此複合材料薄膜應用於電磁微致動元件上,來達到降低功率損耗的目的。超導量子干涉儀量測的結果指出,銅-鎳奈米複合薄膜的磁性特性由逆磁性物質轉變為鐵磁性物質。同時藉由Maxwell Wegner方程式可得知,鍍入導電性奈米鎳材料所製出的複合薄膜將較於鍍入其他氧化鐵磁性粉末的薄膜會有較低的電阻值。因此本銅-鎳複合材料適合應用於電磁微致動元件及其他相關電流-磁場等元件上。將每公升鍍液中攙入2克的鎳奈米粉末所鍍出的薄膜應用於電磁微致動元件上,經由白光干涉儀量測結果發現,將可減少9%的功率損耗於電磁微致動元件。
A Cu/Ni nanocomposite film and related CMOS compatible processes using alkaline noncyanide based copper plating solution have been successfully synthesized, characterized and proposed for low power micropseaker fabrication in this paper. The SQUID (Superconducting Quantum Interference Device Magnetometer) measurement indicates that magnetic properties of Cu can be modified from diamagnetism to ferromagnetism via the incorporation of Ni superparamagnetic nanoparticles into a Cu matrix to form the Cu/Ni nanocomposite film which is plated in the bath with 2g/L Ni. Without largely sacrificing the reduction of electrical conductivity of Cu (<2%), the Ni nanocomposite material shows its potential for the fabrication of high performance magnetic microactuation due to the effective reductions of power consumption of magnetic microactuation. Experimental results show that the total power consumption of magnetic microactuation will save 9% at 1 KHz, 60dB SPL.
Contents
摘要 i
Abstract ii
Acknowledgments iii
Contents iv
Figure Captions vi
Table Captions viii

Contents
Chapter 1 Introduction 1
Chapter 2 Design concept and Synthesis of Cu/Ni nanocomposite 4
2.1 The Conductivity of the Nanocomposite 4
2.2 The Saturated Magnetization of the Nanocomposite 5
2.3 The Process to Disperse the Ni Nanopowder and Plating Solution Preparation 8
2.4 The Measurement of the Cu/Ni Nanocomposite Film 10
2.4.1 The SEM Photograph 11
2.4.2 The EDS Diagram 11
2.4.3 The AFM Analysis 13
2.4.4 The White Light Interferometer Analysis 14
2.4.5 The SQUID Measurement 15

Chapter 3 Magnetic Microactuator Design and Fabrication 17
3.1 Introduction of the microactuator 17
3.2 The Design Concept of the Microactuator 18
3.3 Fabrication Process of the Microactuator 20
3.4 Results and Discussions of the Microactuator 22
3.4.1The Optical Microscopic Photograph 22
3.4.2The Displacement Analysis of the Microactuator 22
3.4.3Sound Pressure Level Simulation 24
3.4.4The power saving ratio 25
Chapter 4 Conclusion and Future Work 27
4.1 Conclusion 27
4.2 Future Work 27
APPENDIX 28
References 31





Figure Captions
Chapter 1
Fig. 1-1 Shows a general scheme of magnetic actuation 2
Chapter 2
Fig. 2-1 Estimated resisitivity versus the concentration of incorporated nano particles, which are CoFe2O4 and Ni, respectively 5
Fig. 2-2 Pure alkaline noncyanide copper electroplating solution 9
Fig. 2-3 Alkaline noncyanide copper plating solution with Ni particles 9
Fig. 2-4 The equipments setup of electroplating for Cu-Ni nanocomposites
A: anode. B: cathode. C: Ni particle 10
Fig. 2-5 The SEM image of the Cu/Ni nanocompasite film surface 11
Fig. 2-6 The EDS analysis spectrum (the electroplating solution is 8.5 g/L) ,
the embedded fraction is 3.56%. 12
Fig. 2-7 The EDS analysis spectrum (the electroplating solution is 5 g/L) ,
the embedded fraction is 2.18% 12
Fig. 2-8 The AFM 2D image of the Cu-Ni film 13
Fig. 2-9 The AFM 3D image of the Cu-Ni film 13
Fig. 2-10 The white light interferometer image of the pure copper film 14
Fig. 2-11 The white light interferometer image of the Cu/Ni composite film 14
Fig. 2-12 The SQUID analysis of the different mechanical stirring speed of the Cu/Ni nanocomposite film (a) Blue line case, the electroplating solution in static state. (b) Pink line case, the electroplating solution stirs at 120rpm 15
Chapter 3
Fig. 3-1 The schematic view of the microactuator 18
Fig. 3-2 The process flow for microactuator fabrication (a) thermal oxidation and low stress nitride deposition, (b) backside etching Si, (c) coating SU8 film, (d) Cu-Ni nanocomposite coil electroplating, (e)permalloy deposition (appendix), (f) hard magnet mount and (g) wafer and PCB board glued together. 21
Fig. 3-3 Figure 3-3.The optical microscopic photograph 22
Fig. 3-4 The operation of the white light interferometer 23
Fig. 3-5 The displacement of the microactuator membrane of pure and Cu/Ni nanocomposite film by white light interferometer. Point1 is the measured point and point 2 is the reference point 23
Fig. 3-6 Simulate of the deformation of the microactuator diaphragm and sound pressure level by ANSYS simulator 25
Fig. 3-7 Measurement of the displacement of pure copper and Cu/Ni nanocomposite coil 25
APPENDIX
Fig. 1 The SEM image of the NiFe alloy electroplating, (a) at 10-2A/cm2, (b) at 2*10-2A/cm2, (c) at 4*10-2A/cm2, (d) at 6*10-2A/cm2, (e) at 8*10-2A/cm2 29
Fig. 2 The EDS analysis of the NiFe alloy electroplating in our design.
The fraction of Fe in the NiFe alloy is 20.85% (at 10-2A/cm2) 30
Fig. 3 The hysteresis loops of the NiFe alloy electroplating in our design.
(At 10-2A/cm2) 30





Table Captions
Chapter 3
Table3-1 Three operation types of the microspeaker 17
References
[1] Jeong Hyun Ku , Jeong Ok Chan and Yang Sang Sik , “Fabrication of an electromagnetic actuator with the planar coil” , Proceedings of SPIE - The International Society for Optical Engineering , v 3990 , 2000 , p 272-280
[2] Bhansali , Shekhar , Zhang , Andy Lei , Zmood , Ronald B. , Jones , Paul E. , Sood , Dinesh K. , “Prototype feedback-controlled bidirectional actuation system for MEMS applications” , Journal of Microelectromechanical Systems , v 9 , n 2 , Jun , 2000 , p 245-251
[3] Singh Janak , Agarwal Ajay and Soundarapandian Mohanraj , “A novel electrostatic microactuator for large deflections in MEMS applications” , Thin Solid Films , v 504 , n 1-2 , May 10 , 2006 , Proceedings of The International Conference on Materials for Advanced Technologies (ICMAT 2005) Symposium , p 64-68
[4] Pan Chi Shiang and Hsu Wensyang , ”Electro-thermally and laterally driven polysilicon microactuator” , Journal of Micromechanics and Microengineering , v 7 , n 1 , Mar , 1997 , p 7-13
[5] Damjanovic D. , Brooks K.G. , Kholkin A. , Kohli M. , Maeder T. , Muralt P. and Setter N. , “Properties of piezoelectric PZT thin films for microactuator applications” , Materials Research Society Symposium - Proceedings , v 360 , Materials for Smart Systems , 1995 , p 429-434
[6] Pan C.T. , She S.-C. and Chou H.-P. , “Design and fabrication of high power electromagnetic microactuator with perpendicular magnetic anisotropy” , ASME International Mechanical Engineering Congress and Exposition , Proceedings , v 2 , 2001 , p 2759-2764
[7] Ahn Chong H. and Allen Mark G. , “Planar micromachined spiral inductor for integrated magnetic microactuator applications” , Journal of Micromechanics and Microengineering , v 3 , n 2 , Jun , 1993 , p 37-44
[8] de Bhailis D. , Murray C. , Duffy M. , Alderman J. , Kelly G. and O Mathuna S.C. ”Modelling and analysis of a magnetic microactuator” , Sensors and Actuators , A: Physical , v 81 , n 1 , Apr , 2000 , p 285-289.
[9] B.Rejaei , M. Vroubel ,Y.Zhuang , and J.N , Burghartz , ”Assessment of ferromagnetic integrated inductors for Si-technology” , Silicon Monolithic Integrated Circuits in RF Systems , 2003. Digest of Papers. 2003 Topical Meeting on , 9-11 April 2003 , pp.100-103
[10] Teruhiro Kasagi , “Particle Size Effect on the Complex Permeability for Permalloy Composite Materials” , IEEE Transactions on Magnetics , vol. 35 , NO. 5 , SEPTEMBER , pp. 3424-3426 , 1999.
[11] L. Carroll , M. Sternitzke and B. Derby , “Silicon Carbide Particle Size Effects in Alumina-based nanocomposites” , Acta mater. , vol.44 , NO. 11 , pp. 4543-4552. 1996.
[12] Guang-Ren Shen , Yu-Ting Cheng , Member , IEEE , and Li-Nuan Tsai , “Synthesis and Characterization of Ni–P-CNT’s Nanocomposite Film for MEMS Applications” , IEEE Transactions on Nanotechnology , vol 4 , no. 5 , pp. 539-547 , September 2005.
[13] Tzu Yuan Chao and Y. T. Cheng , “Synthesis and Characterization of Cu/CoFe2O4 Magnetic Nanocomposite for RFIC Application” , 6th IEEE Conference on Nanotechnology , July 2006.
[14] Dae Gon Han , and Gyeong Man Choi , “Computer Simulation of the Electrical Conductivity of Composites: the Effect of Geometrical Arrangement” , Solid State Ionics , 106(1998) , pp.71-87
[15] F. Mandl , “Quantum Mechanics” , John Wiley &Sons , november 2001.
[16] B. D. Cullity , Introduction to Magnetic Materials. New York: Ad- dison-Wesley , 1973 , pp. 153–153.
[17] T.S. Birch , M.A. Harradine , J.C. Stevens ,”Microengineered systems for the hearing impaired” ,Medical Applications of Microengineering , IEE Colloquium on 31 Jan 1996 Page(s):2/1 - 2/5.
[18] Ming-Cheng Cheng , Wen-Sheh Huang and Star Ruey-Shing Huang , “A silicon microspeaker for hearing instruments” ,et al 2004 J. Micromech. Microeng. 14 859-866.
[19] Jörg Rehder , Pirmin Rombach and Ole Hansen ,“Balanced membrane micromachined loudspeaker for hearing instrument application” ,et al 2001 J. Micromech. Microeng. 11 334-338.
[20] Cheng M C , Huang W S , Huang R S and Chin T S 2001 ,” A novel micromachined electromagnetic loudspeaker for hearing aids” , IEEE Int. Proc. Transducers’01/Eurosensors XV (Munich , Germany).
[21] Lorenz H. , Despont M. , Fahrni N. , LaBianca N. , Renaud P. and Vettiger P. ”SU-8: A low-cost negative resist for MEMS” , Journal of Micromechanics and Microengineering , v 7 , n 3 , Sep , 1997 , p 121-124
[22] David K Cheng , “Field and Wave Electromagnetics” , Wesley Publishing Company , Inc. , 1989.
[23] Richard M. Bozorth , “Ferromagnetism” , Wiley-IEEE Press (1993 reissue).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top