跳到主要內容

臺灣博碩士論文加值系統

(44.210.77.73) 您好!臺灣時間:2024/02/28 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張懷仁
研究生(外文):Whai-Ren Chang
論文名稱:用於UWB之CORDICbased等化器設計
論文名稱(外文):CORDIC based Equalizer for Ultra-Wide band system
指導教授:溫瓌岸
指導教授(外文):Dr.Kuei-Ann Wen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:76
中文關鍵詞:等化器超寬頻
外文關鍵詞:equalizercordicUWB
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出以CORDIC為核心的IEEE802.15.3a接收器為設計目標的等化器設計與實現。並利用平行化及管線化(pipeline)結構,設計出具有高速以及低複雜度的等化器,其輸出量最快可達到655百萬取樣。為了能完成完整的UWB模擬及研究。我們根據S-V通道模型,以及Intel提出的室內通道模型,建構出UWB所需的通道模型。在演算法方面,以CORDIC為核心的通道估測演算法,以及通道估測誤差修補演算法被推導出,並驗證其複雜度低於一般的演算法。同時,在CMOS.18製程下以SYNOSYS ASTRO完成macro設計。
In this thesis, we proposed a high speed Equalizer for CORDIC based inner receiver, including modulation, FFT/IFFT, synchronization and equalization. By the parallel and pipeline design, the proposed design, based on the specification of IEEE 802.15.3a Ultra Wideband system, has good speed performance and low complexity. The throughput can achieves 655M samples per second. In order to fully simulation the UWB system, a channel model base on S-V model and Intel proposed channel model are built and verification. We proposed a CORDIC based channel estimation and channel estimation error tracking algorithm with low computation complexity. Also, the macro design in CMOS.18μm with core size 1470 x 1470 um2 is applied with SYNOPSYS ASTRO
中文摘要……..………………………………………....……………………………...I
Abstract………………………………………………………………………………..II
誌謝…….…………………………………………………………………..…...III
Contents…………………………………………………………………………..….IV
List of Tables……………………………………………………………………..….VI
List of Figures…………………………………………………………………..….VII

Chapter 1 Introduction………………………………………………………………...1
1.1 Introduction to Ultra-Wideband……….....…………………………….......1
1.2 Ultra Wideband Physical Layer……………..……..……………..……..........2
1.3 OFDM Overview……..……………………………………………..……...4
1.4 Channel Equalizer Design Spec...………...……………..…………..……...7
1.5 Design requirements of Equalizer for UWB……………………………….8
1.5.1 Frame Format………………………………………………………8
1.5.2 Data Subcarriers……………………………………………………..9
1.5.3 Pilot subcarriers……………………………………………………11
1.5.4 Guard subcarriers……………………………………………………12
1.5.5 Channelization……………………………………………………….13
1.5.6. Time-domain Spreading…………………………………………….14
1.6 Organization of this thesis…………………………………………..……..15

Chapter 2 Channel Model…………………………….…………..……..…………..16
2.1 Introduction to Channel Model for Ultra Wide Band……….……………16
2.2 The Saleh-Valenzuela (S-V) multi-path model…………………………….16
2.3 The Intel proposed UWB multi-path channel model……………………..19
2.4 The path-loss model……………………………………………………….20
2.5 Channel Verifications……………………………………………………..21
Chapter 3 A Equalizer design for UWB systems…………………………………..27
3.1 CORDIC algorithm……………………………………………………….27
3.2 Equalization algorithm……………………………………………………33
3.2.1 Channel estimation error tracking…………………………………..36
3.3 The CORDIC based Equalization algorithm……………………………...38
3.3.1 The CORDIC based Channel Estimation Error Tracking………….39
3.4 Phase Error Tracking………………………………………………………41
3.4.1 Carrier Frequency Offset Tracking…………………………………42
3.4.2 Sampling Clock Offset Tracking……………………………………44

Chapter 4 Implementation and Verification…………………………………………47
4.1 Architecture of the proposed equalizer…………………………………..47
4.1.1 Architecture of the CORDIC based Equalizer……………………..48
4.1.1.1 Architecture of RAM control……………………….……….49
4.1.1.2 Architecture of CE & PET (phase)………………………..…49
4.1.1.3 Architecture of CE error tracking………………………….50
4.1.1.4 Architecture of CE (magnitude)…………………………….51
4.1.2 Architecture of the CORDIC…………………………….………….51
4.2 Implementation issues…………………………………………………….53
4.3 Hardware synthesis…………………………………………………….….55
4.4 Soft IP Qualification………………………………………………………55
4.5 FPGA prototyping……………………………………………………..…..58
4.6 Implementation results…………………………………………………….60

Chapter 5 Simulation result and performance analysis…………………………..…..62
5.1 Introduction………………………………………………………………..62
5.2 System platform…………………………………………………………..64
5.3 Performance analysis……………………………………………………...65
5.3.1 CE error tracking Performance……………………………………..65
5.3.2 Phase error tracking Performance…………………………………..67
5.3.3 System Performance………………………………………………..70

Chapter 6 Conclusions and Future Work…………………………………………….71
6.1 Conclusions………………………………………………………...………71
6.2 Future Work…..…………………………………………………...………71

Bibliography...………………………………………………………………………73
[1] A. Batra, et al., “MultiBand OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a,”, http://www.multibandofdm.org, September 2004.
[2] A.Saleh and R.Valenzuela, “A Statistical Model for Indoor Multipath Propagation,”, IEEE JSAC, Vol. SAC-5, No. 2, pp. 128-137, Feb. 1987
[3] IEEE P802.15-02/279r0-SG3a, “UWB Channel Modeling Contribution from Intel”, available at http://grouper.ieee.org/groups/802/15/pub/2002/Jul02.
[4] J. Foerster et al., "Channel modeling sub-committee report final,", IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), IEEE P802.15-02/490r1-SG3a, Feb. 2003.
[5] Anuj Batra, Jaiganesh Balakrishnan, G. Roberto Aiello, Jeffrey R. Foerster, and Anand Dabak, , “Design of a Multiband OFDM System for Realistic UWB Channel Environments”, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 9, SEPTEMBER 2004
[6] Chia-Sheng Peng; Yuan-Shin Chuang; Kuei-Ann Wen, “CORDIC-based architecture with channel state information for OFDM baseband receiver”, IEEE Transactions on Consumer Electronics, Volume 51, Issue 2, pp. 403 – 412, May 2005
[7] Yi-Hsin Yu, “A channel equalizer for OFDM-based wireless access system“, M.S. thesis, Dept. Electronics Engineering, National Chiao Tung Univ., Taiwan, 2004.
[8] Yuqiang Zhang; Junhui Zhao, “Performance simulation of fixed-point for MB-OFDM UWB system”, Wireless Communications, Networking and Mobile Computing, 2005. Proceedings. 2005 International Conference on Volume 1, pp. 292 - 295, Sept. 2005
[9] Anuj Batra, Jaiganesh Balakrishnan, G. Roberto Aiello, Jeffrey R. Foerster, and Anand Dabak, , “Design of a Multiband OFDM System for Realistic UWB Channel Environments”, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 9, SEPTEMBER 2004
[10] Yuan-Mao Chang; Cheng-Wei Kuang; Chien-Ching Lin; Tzu-Shien Sang; Hsie-Chia Chang; Chen-Yi Lee, “A new channel equalizer for OFDM-based wireless communications”, IEEE VLSI-TSA International Symposium pp.104 – 107, April 2005
[11] Choi, J.D.; Stark, W.E., “Performance of UWB communications with imperfect channel estimation”, Military Communications Conference, 2003. MILCOM 2003. IEEE Vol 2, pp. 915 - 920 Vol.2, Oct. 2003.
[12] Hewavithana, T.C.; Brookes, D.A., “Blind adaptive channel equalization for OFDM using the cyclic prefix data”, Global Telecommunications Conference, 2004. GLOBECOM '04. IEEE Volume 4, pp.2376 - 2380 Vol.4, Dec. 2004
[13] Hsuan-Yu Liu; Chien-Ching Lin; Yu-Wei Lin; Ching-Che Chung; Kai-Li Lin; Wei-Che Chang; Lin-Hung Chen; Hsie-Chia Chang; Chen-Yi Lee, “A 480Mb/s LDPC-COFDM-based UWB baseband transceiver”, Proceedings on of IEEE International Solid-State Circuits Conference, pp. 444 - 609, Feb. 2005
[14] Jen-Chih Kuo; Ching-Hua Wen; An-Yeu Wu, “Implementation of a programmable 64/spl sim/2048-point FFT/IFFT processor for OFDM-based communication systems”, Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium, pp. II-121 - II-124 vol.2, May 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文