|
Chapter 1 [1.1] A. G. Lewis, I. -W. Wu, T. Y. Huang, A. Chiang, and R. H. Bruce, “Active matrix liquid crystal display design using low and high temperature processed polysilicon TFTs,” in IEDM Tech. Dig., 1990, pp. 843-846. [1.2] M. G. Clark, “Current status and future prospects of poly-Si devices,” IEE Proceedings - Circuits, Devices and Systems, vol. 141, pp. 3-8, Feb. 1994. [1.3] G. Fortunato, “Polycrystalline silicon thin-film transistors: A continuous evolving technology,” Thin Solid Films, vol. 296, pp. 82-90, Mar. 1997. [1.4] S. H. Jung, W. J. Nam, J. H. Lee, J. H. Jeon, and M. K. Han, “A new low-power pMOS poly-Si inverter for AMDs,” IEEE Electron Device Lett., vol. 26, pp. 23-25, Jan. 2005. [1.5] S. D. S. Malhi, H. Shichijo, S. K. Banerjee, R. Sundaresan, M. Elahy, G. P. Polack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee, and H. W. Lam, “Characteristics and three-dimensional integration of MOSFET’s in small-grain LPCVD polycrystalline silicon,” IEEE Trans. Electron Devices, vol. 32, pp. 258-281, Feb. 1985. [1.6] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanaka, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, vol. 42, pp. 1305-1313, Jul. 1995. [1.7] M. Aoki, T. Hashimoto, T. Yamanaka, and T. Nagano, “Large 1/f noise in polysilicon TFT loads and its effects on the stability of SRAM cells,” Jpn. J. Appl. Phys., vol. 35, pp. 838-841, Feb. 1996. [1.8] S. Koyama, “A novel cell structure for giga-bit EPROMs and flash memories using polysilicon thin film transistors,” in VLSI Symp. Tech. Dig., 1992, pp. 44-45. [1.9] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” in IEEE Trans. Electron Devices, vol. 43, pp. 1930-1936, Nov. 1996. [1.10] T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFTs analog readout circuits and dynamic shift registers,” IEEE Trans. Electron Devices, vol. 38, pp. 1086-1093, May, 1991. [1.11] Y. Hayashi, H. Hayashi,M. Negishi, and T. Matsushita, “A thermal printer head with CMOS thin-film transistors and heating elements integrated on a chip,” in Proc. Int. Solid-State Circuit Conf., 1988, pp. 266-267. [1.12] D. B. Meakin, P. A. Coxon, P. Migliorato, J. Stoemenos, and N. A. Economou, “High-performance thin-film transistors from optimized polycrystalline silicon films,” Appl. Phys. Lett., vol. 50, pp. 1894-1896, Jun. 1987. [1.13] A. Mimura, N. Konishi, K. Ono, J. I. Ohwada, Y. Hosokawa, Y. A. Ono, T. Suzuki, K. Miyata, and H. Kawakami, “High performance low-temperature poly-Si n-channel TFTs for LCD,” IEEE Trans. Electron Devices, vol. 36, pp. 351-359, Feb. 1989. [1.14] K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta, “High-performance TFTs fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film,” IEEE Trans. Electron Devices, vol. 36, pp. 2868-2872, Dec. 1989. [1.15] S. D. Brotherton, D. J. McCulloch, J. B. Clegg, and J. P. Gowers, “Excimer-laser-annealed poly-Si thin-film transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 407-413, Feb. 1993. [1.16] P. Mei, J. B. Boyce, M. Hack, R. A. Lujan, R. I. Johnson, G. B. Anderson, D. K. Fork, and S. E. Ready, “Laser dehydrogenation/crystallization of plasma-enhanced chemical vapor deposited amorphous silicon for hybrid thin film transistors,” Appl. Phys. Lett., vol. 64, pp. 1132-1134, Feb. 1994. [1.17] T. Noguchi, A. J. Tang, J. A. Tsai, and R. Reif, “Comparison of effects between large-area-beam ELA and SPC on TFT characteristics,” IEEE Trans. Electron Devices, vol. 43, pp. 1454-1458, Sep. 1996. [1.18] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, S. Nakano, “High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics,” in IEDM Tech. Dig., pp. 563-566, 1991. [1.19] Z. Meng, M. X. Wang, and M. Wong, “High performance low temperature metal-induced unilaterally crystallized polycrystalline silicon thin film transistors for system-on-panel applications,” IEEE Trans. Electron Devices, vol. 47, pp. 404-409, Feb. 2000. [1.20] G. Liu and S. J. Fonash, “Polycrystalline silicon thin film transistors on Corning 7059 glass substrates using short time, low-temperature processing,” Appl. Phys. Lett., vol. 62, pp. 2554-2556, May 1993. [1.21] J. G. Fossum, A. Ortiz-Conde, H. Shichijo, S. K. Banerjee, “Anomalous leakage current in LPCVD polysilicon MOSFET's,” IEEE Trans. Electron Devices, vol. 32, pp. 1878-1884, Sep. 1985. [1.22] I. W. Wu, T. Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang, “Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation,” IEEE Electron Device Lett., vol. 12, pp. 181-183, Apr. 1991. [1.23] T. F. Chen, C. F. Yeh, and J. C. Lou, “Investigation of grain boundary control in the drain junction on laser-crystalized poly-Si thin film transistors,” IEEE Electron Device Lett., vol. 24, pp. 457-459, Jul. 2003. [1.24] S. Seki, O. Kogure, and B. Tsujiyama, “Leakage current characteristics of offset-gate-structure polycrystalline-silicon MOSFETs,” IEEE Electron Device Lett., vol. 8, pp. 434-436, Sep. 1987. [1.25] K. Tanaka, H. Arai, and S. Kohda, “Characteristics of offset-structure polycrystalline-silicon thin-film transistors,” IEEE Electron Device Lett., vol. 9, pp. 23-25, Jan. 1988. [1.26] C. A. Dimitriadis, G. Kamarinos, and J. Brini, “Leakage current of offset gate p- and n-channel excimer laser annealed polycrystalline silicon thin-film transistors,” Solid State Electron., vol. 45, pp. 365-368, Feb. 2001. [1.27] K. Y. Choi, J. W. Lee, M. K. Han, “Gate-overlapped lightly doped drain poly-Si thin-film transistors for large area-AMLCD,” IEEE Trans. Electron Devices, vol.45, pp. 1272-1279, Jun. 1998. [1.28] K. Tanaka, K. Nakazawa, S. Suyama, and K. Kato, “Characteristics of field-induced-drain (FID) poly-Si TFTs with high on/off current ratio,” IEEE Trans. Electron Devices, vol. 39, pp. 916-920, Apr. 1992. [1.29] R. E. Proano, R. S. Misage, D. G. Ast, “Development and electrical properties of undoped polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 36, pp. 1915-1922, Sep. 1989. [1.30] E. M. Vogel, “Technology and metrology of new electronic materials and devices,” Nature Nanotechnology, vol. 2, pp. 25-32, Jan. 2007. [1.31] D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor, and C. M. Hu, “FinFET - a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, pp. 2320-2325, Dec. 2000. [1.32] R. H. Chen, A. N. Korotkov, and K. K. Likharev, “Single-electron transistor logic,” Appl. Phys. Lett., vol. 68, pp. 1954-1956, Apr. 1996. [1.33] S. W. Chung, J. Y. Yu, and J. R. Heath, “Silicon nanowire devices,” Appl. Phys. Lett., vol. 76, pp. 2068-2070, Apr. 2000. [1.34] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Letters, vol. 3, pp. 149-152, Feb. 2003. [1.35] H. Fujii, T. Matsukawa, S. Kanemaru, H. Yokoyama, and J. Itoh, “Characterization of electrical conduction in silicon nanowire by scanning Maxwell-stress microscopy,” Appl. Phys. Lett., vol. 78, pp. 2560-2562, Apr. 2001. [1.36] S. Q. Lud, M. G. Nikolaides,I. Haase, M. Fischer, and A. R. Bausch, “Field effect of screened charges: Electrical detection of peptides and proteins by a thin-film resistor,” ChenPhysChem, vol. 7, pp. 379-384, 2006. [1.37] H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Letters, vol. 4, pp. 1247-1252, Jul. 2004. [1.38] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, pp. 1289-1292, Aug. 2001. [1.39] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, “Sequence-specific label-free DNAsensors based on silicon nanowires,” Nano Letters, vol. 4, pp. 245-247, Apr. 2004. [1.40] L. Risch, L. Dreekornfeld, J. Hartwich, F. Hofmann, J. Kretz, and M. Stadele, “Multi gate transistors and memory cells for future CMOS generation,” in Tech. Dig. IEEE 2004 Silicon Nanoelectronics Workshop, pp. 1-2. [1.41] J. E. Jang, S. N. Cha, Y. Choi, T. B. Butler, D. J. Kang, and D. G. Hasko et al., “Nanoelectromechanical DRAM for ultra-large-scale integration,” in IEDM Tech. Dig., 2005, pp. 269-272. [1.42] C. A. Dimitriadis, P. A. Coxon, A. J. Lowe, J. Stoemenos, and N. A. Economou, “Control of the performance of polysilicon thin-film transistor by high-gate-voltage stress,” IEEE Electron Device Lett., vol. 12, pp. 676-678, Dec. 1991. [1.43] N. D. Young and A. Gill, “Water-related instability in TFTs formed using deposited gate oxides,” Semicond. Sci. Technol., vol. 7, pp. 1103-1108, Aug. 1992. [1.44] T. Yoshida, K. Yoshino, M. Takei, A. Hara, N. Sasaki and T. Tsuchiya, “Experimental evidence of grain-boundary related hot-carrier degradation mechanism in low-temperature poly-Si thin-film-transistors,” in IEDM Tech. Dig., 2003, pp. 8.8.1-8.8.4. [1.45] A. T. Hatzopoulos, D. H. Tassis, N. A. Hastas, C. A. Dimitriadis and G. Kamarinos, “An analytical hot-carrier induced degradation model in polysilicon TFTs,” IEEE Trans. Electron Devices, vol. 52, pp. 2182-2187, Oct. 2005. [1.46] N. Kato, T. Yamada, S. Yamada, T. Nakamura, and T. Hamano, “Degradation mechanism of polysilicon TFT’s under D.C. stress,” in IEDM Tech. Dig., 1992, pp. 677-680. [1.47] S. Inoue, and H. Ohshima, “New degradation phenomenon in wide channel poly-Si TFTs fabricated by low temperature process,” in IEDM Tech. Dig., 1996, pp. 781-784. [1.48] S. Ecoffey, M. Mazza, V. Pott, D. Bouvet, A. Schmid, and Y. Leblebici et al., “A new logic based on hybrid MOSFET-polysilicon nanowires,” in IEDM Tech. Dig., 2005, pp. 277-280. [1.49] L. Risch, L. Dreekornfeld, J. Hartwich, F. Hofmann, J. Kretz, and M. Stadele, “Multi gate transistors and memory cells for future CMOS generation,” in Tech. Dig. IEEE 2004 Silicon Nanoelectronics Workshop, pp. 1-2. [1.50] X. Duan and C. M. Lieber, “Laser-assisted catalytic growth of single crystal GaN nanowires,” J. of American Chemical Society, vol. 122, pp. 188-189, Jan. 2000.
Chapter 2 [2.1] F. L. Yang, D. H. Lee, H. Y. Chen, C. Y. Chang, S. D. Liu, and C. C. Huang et al., “5nm-gate nanowire FinFET,” in Tech. Dig. 2004 Symp. VLSI Technol., pp. 196-197. [2.2] S. Ecoffey, M. Mazza, V. Pott, D. Bouvet, A. Schmid, and Y. Leblebici et al., “A new logic based on hybrid MOSFET-polysilicon nanowires,” in IEDM Tech. Dig., 2005, pp. 277-280. [2.3] L. Risch, L. Dreekornfeld, J. Hartwich, F. Hofmann, J. Kretz, and M. Stadele, “Multi gate transistors and memory cells for future CMOS generation,” in Tech. Dig. IEEE 2004 Silicon Nanoelectronics Workshop, pp. 1-2. [2.4] X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman, “High-performance thin-film transistors using semiconductor nanowires and nanoribbons,” Nature, vol. 425, pp. 274-278, Sep. 2003. [2.5] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, pp. 1289-1292, Aug. 2001. [2.6] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, “Sequence-specific label-free DNA sensors based on silicon nanowires,” Nano Letters, vol. 4, pp. 245-247, Feb. 2004. [2.7] J. E. Jang, S. N. Cha, Y. Choi, T. B. Butler, D. J. Kang, and D. G. Hasko et al., “Nanoelectromechanical DRAM for ultra-large-scale integration,” in IEDM Tech. Dig., 2005, pp. 269-272. [2.8] Y. K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, “Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography,” J. Phys. Chem. B, vol. 107, pp. 3340-3343, Apr. 2003. [2.9] R. Lin, H. C. Lin, J. Y. Yang, S. W. Shen, and C. J. Su, “A novel method for the preparation of Si nanowires,” in Int’l Conf. on Solid State Devices and Materials, 2006, pp. 692-693. [2.10] X. Duan and C. M. Lieber, “Laser-assisted catalytic growth of single crystal GaN nanowires,” J. of American Chemical Society, vol. 122, pp. 188-189, Jan. 2000. [2.11] M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth,” Journal of Nanoscience and Nanotechnology, vol. 3, pp. 341-346, Aug. 2003. [2.12] A. Persson, M. W. Larsson, S. Senstrom, B. J. Ohlsson, L. Samulson and L. R. Wallenberg, “Solid-phase diffusion mechanism for GaAs nanowire growth,” Nature Materials, vol. 3, pp. 677-681, Oct. 2004. [2.13] N. A. Sanford, L. H. Robins, M. H. Gray, Y.-S. Kang, J. E. Van Nostrand, C. Stutz, R. Cortez, A. V. Davydov, A. Shapiro, I. Levin, and A. Roshko, “Fabrication and analysis of GaN nanorods grown by MBE,” Physica Status Solidi C, vol. 2, no. 7, pp. 2357-2360, 2005. [2.14] H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee and S. T. Lee, “Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition,” Chemical Physics Lett., vol. 327, pp. 263-270, Sep. 2000. [2.15] J. Su, G. Cui, M. Gherasimova, H. Tsukamoto, J. Han, D. Ciuparu, S. Lim, L. Pfefferle, Y. He, A. V. Nurmikko, C. Broadbridge, and A. Lehman, “Catalytic growth of group III-nitride nanowires and nanostructures by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 86, pp. 013105-013107, Jan. 2005. [2.16] Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science, vol. 291, pp. 630-633, Jan. 2001. [2.17] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled growth and structures of molecular-scale silicon Nanowires,” Nano Letters, vol. 4, pp. 433-436, Mar 2004. [2.18] M. Cao, T. J. King, and K. C. Saraswat, “Determination of the densities of gap states in hydrogenated polycrystalline Si and Si0.8Ge0.2 films,” Appl. Phys. Lett., vol. 61, pp. 672-674, Aug. 1992. [2.19] Y. J. Tung, X. Huang, T. J. King, J. Boyce, and J. Ho, “Improved DC reliability of polysilicon thin-film transistors with deuterium plasma treatment,” in SID Symp. Dig. of Tech. Papers, 1999, vol. 30, pp. 398-401 [2.20] M. -J. Tsai, F. -S. Wang, K. -L. Cheng, S. -Y. Wang, M. -S. Feng and H. -C. Cheng, “Characterization of H2/N2 plasma passivation process for poly-Si thin film transistors (TFTs),” Solid-State Electronics, vol. 38, pp. 1233-1238, Jun. 1995. [2.21] H. -C. Cheng, F. -S. Wang, and C. -Y. Huang, “Effects of NH3 plasma passivation on n-channel polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 64-68, Jan. 1997. [2.22] K. Y. Choi, J. S. Yoo, M. K. Han, and Y. S. Kim, “Hydrogen passivation on the grain boundary and intragranular defects in various polysilicon thin-film transistors,” Jpn. J. of Appl. Phys., vol. 35, pp. 915-918, Feb. 1996. [2.23] H. Wang, M. Chan, S. Jagar, V. M. C. Poon, M. Qin, and Y. Wang et al., “Super thin-film transistor with SOI CMOS performance formed by a novel grain enhancement method,” IEEE Trans. Electron Devices, vol. 47, pp. 1580-1586, Aug. 2000. [2.24] W. B. Jackson, N. M. Johnson, C. C. Tsai, I-W. Wu, A. Chiang, and D. Smith, “Hydrogen diffusion in polycrystalline silicon thin films,” Appl. Phys. Lett., vol. 61, pp. 1670-1672, Oct. 1992. [2.25] H. Wang, M. Chan, Y. Wang, and P. K. Ko, “The behavior of narrow-width SOI MOSFET’s with MESA isolation,” IEEE Trans. Electron Devices, vol. 47, pp. 593-600, Mar 2000. [2.26] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” Journal of Physical Chemistry B, vol. 104, pp. 5213-5216, Jun. 2000.
Chapter 3 [3.1] P. Migliorato P, and D. B. Meakin, “Material properties and characteristics of polysilicon transistors for large area electronics,” Applied Surface Science, vol. 30, pp. 353-371, Oct. 1987. [3.2] S. D. Brotherton, J. R. Ayres, and N. D. Young, “Characterization of low-temperature poly-Si thin-film transistors,” Solid-State Electronics, vol. 34, pp. 671-679, Jul. 1991. [3.3] C. -F. Yeh, T. -Z. Yang, C. -L. Chen, T. -J. Chen and Y. -C. Yang, “Experimental comparison of off-state current between high-temperature- and low-temperature-processed undoped channel polysilicon thin-film transistors,” Jpn. J. of Appl. Phys., vol. 32, pp. 4472-4478, Oct. 1993. [3.4] S. K. Madan and D. A. Antoniadis, “Leakage current mechanisms in hydrogen-passivated fine-grain polycrystalline silicon on insulator MOSFETs,” IEEE Trans. Electron Devices, vol.33, pp.1518-1528, Oct. 1986. [3.5] A. Rodriguez, E. G. Moreno, H. Pattyn, J. F. Nijs, and R. P. Mertens, “Model for the anomalous off current of polysilicon thin film transistors and diodes,” IEEE Trans. Electron Devices, vol. 40, pp. 938-943, May 1993. [3.6] O. K. B. Lui and P. Migliorato, “A new generation-recombination model for device simulation including the Poole-Frenkel effect and phonon-assisted tunneling,” Solid-State Electronics, vol. 41, pp. 575-583, Apr. 1997. [3.7] I. -W. Wu, A. G. Lewis, T. Y. Huang, W. B. Jackson, and A. Chiang, “Mechanism and device-to-device variation of leakage current in polysilicon thin film transistors,” in IEDM Tech. Dig., 1990, pp. 867-870. [3.8] K. Ono, T. Aoyama, N. Konishi, and K. Miyata, “Analysis of current voltage characteristics of low-temperature-processed polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 792-802, Apr. 1992. [3.9] J.G. Fossum, A. Ortiz-Conde, H. Shichijo, and S. K. Banerjee, “Anomalous leakage current in LPCVD polysilicon MOSFET's,” IEEE Trans. Electron Devices, vol. 32, pp. 1878-1884, Sep. 1985. [3.10] M. Yazaki, S. Takenaka, and H. Ohshima, “Conduction mechanism of leakage current observed in metal-oxide-semiconductor transistors and poly-Si thin-film transistors,” Jpn. J. of Appl. Phys., vol. 31, pp. 206-209, Feb. 1992. [3.11] S. K. Madan, and D. A. Antoniadis, “Leakage current mechanisms in hydrogen-passivated fine-grain polycrystalline silicon on insulator MOSFET's,” IEEE Trans. Electron Devices, vol. 33, pp. 1518-1528, Oct. 1986. [3.12] K. R. Olasupo and M. K. Hatalis, “Leakage current mechanism in sub-micron polysilicon thin-film transistors,” IEEE Trans., Electron Devices, vol.43, pp. 1218-1223, Aug. 1996. [3.13] T. Y. Ihn, T. K. Kim, B. I. Lee, and S. K. Joo, “A study on the leakage current of poly-Si TFTs fabricated by metal induced lateral crystallization,” Microelectronics Reliability, vol.39, pp. 53-58, Jan. 1999. [3.14] A. B. Y. Chan, C. T. Nguyen, P. K. Ko, M. Wong, A. Kumar, J. Sin, and S. S. Wong, “Optimizing polysilicon thin-film transistor performance with chemical-mechanical polishing and hydrogenation,” IEEE Electron Device Lett., vol. 17, pp. 518-520, Nov. 1996. [3.15] G. P. Pollack, W. F. Richardson, S. D. S. Malhi, T. Bonifield, H. Shichijo, S. Banerjee, M. Elahy, A. H. Shah, R. Womack, and P. K. Chatterjee, “Hydrogen passivation of polysilicon MOSFET's from a plasma nitride source,” IEEE Electron Device Lett., vol. 5, pp. 468-470, Nov. 1984. [3.16] L. K. Lam, D. L. Chen, and D. G. Ast, “Plasma nitride hydrogen source encapsulation method to hydrogenate polysilicon thin film transistors,” Electrochem. Solid-State Lett., vol. 2, pp. 140-142, Mar. 1999. [3.17] M. Rodder, D. A. Antoniadis, F. Scholz, and A. Kalnitsky, “Effects of H+ implant dose and film deposition conditions on polycrystalline-Si MOSFET characteristics,” IEEE Electron Device Lett., vol. 8, pp. 27-29, Jan. 1987. [3.18] C. Min, Z. Tiemin, K. C. Saraswat, and J. D. Plummer, “Study on hydrogenation of polysilicon thin film transistors by ion implantation,” IEEE Trans., Electron Devices, vol.42, pp. 1134-1140, Jun. 1995. [3.19] I. -W. Wu, A. G. Lewis, T. Y. Huang, and A. Chiang, “Effects of trap-state density reduction by plasma hydrogenation in low-temperature polysilicon TFT,” IEEE Electron Device Lett., vol. 10, pp. 123-125, Mar. 1989. [3.20] I. -W Wu, T. -Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang, “Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation,” IEEE Electron Device Lett., vol. 4, pp. 181-183, Apr. 1991. [3.21] M. -J. Tsai, F. -S. Wang, K. -L. Cheng, S. -Y. Wang, M. -S. Feng, and H. -C. Cheng, “Characterization of H2/N2 plasma passivation process for poly-Si thin film transistors (TFTs),” Solid-State Electronics, vol. 38, pp. 1233-1238, Jun. 1995. [3.22] H. -C. Cheng, F. -S. Wang, and C. -Y. Huang, “Effects of NH3 plasma passivation on n-channel polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 64-68, Jan. 1997. [3.23] C. T. Liu and K. H. Lee, “An experimental study on the short-channel effects in undergated polysilicon thin-film transistors with and without lightly doped drain structures,” IEEE Electron Device Lett., vol. 14, pp. 149-151, Mar. 1993. [3.24] K. Tanaka, H. Arai, and S. Kohda, “Characteristics of offset-structure polycrystalline-silicon thin-film transistors,” IEEE Electron Device Lett., vol. 9, pp. 23-25, Jan. 1988. [3.25] S. Seki, O. Kogure, and B. Tsujiyama, “Leakage current characteristics of offset-gate-structure polycrystalline-silicon MOSFETs,” IEEE Electron Device Lett., vol. 8, pp. 434-436, Sep. 1987. [3.26] K. Y. Choi, J. W. Lee, and M. K. Han, “Gate-overlapped lightly doped drain poly-Si thin-film transistors for large area-AMLCD,” IEEE Trans. Electron Devices, vol.45, pp. 1272-1279, Jun. 1998. [3.27] K. Tanaka, K. Nakazawa, S. Suyama, and K. Kato, “Characteristics of field-induced-drain (FID) poly-Si TFTs with high on/off current ratio,” IEEE Trans. Electron Devices, vol. 39, pp. 916-920, Apr. 1992. [3.28] B. H. Min, C. M. Park, and M. K. Han, “A novel polysilicon thin-film transistor with a p-n-p structured gate electrode,” IEEE Electron Device Lett., vol. 17, pp. 560-562, Dec. 1996. [3.29] K. W. Kim, K. S. Cho, and J. Jang, “A polycrystalline silicon thin-film transistor with a thin amorphous buffer,” IEEE Electron Device Lett., vol. 20, pp. 560-562, Nov. 1999. [3.30] Z. Xiong, H. Liu, C. Zhu, and J. K. O. Sin, “Characteristics of high-k spacer offset-gated polysilicon TFTs,” IEEE Trans. Electron Devices, vol. 51, pp. 1304-1308, Aug. 2004. [3.31] M.-C. Lee, S.-H. Jung, I.-H. Song, and M.-K. Han, “A new poly-Si TFT structure with air cavities at the gate-oxide edges,” IEEE Electron Device Lett., vol. 22, pp. 539-541, Nov. 2001. [3.32] T. E. Chang, C. Huang, and T. Wang, “Mechanisms of interface trap-induced drain leakage current in off-state n-MOSFET's,” IEEE Trans. Electron Devices, vol. 42, pp. 738-743, Apr. 1995. [3.33] M. Bonnel, N. Duhamel, M. Guendouz, L. Haji, B. Loisel, and P. Ruault, “Poly-Si thin-film transistors fabricated with rapid thermal annealed silicon films,” Jpn. J. of Appl. Phys., vol. 30, pp. L1924-L1926, Nov. 1991. [3.34] M. Cao, T. -J. King, and K. C. Saraswat, “Determination of the densities of gap states in hydrogenated polycrystalline Si and Si0.8Ge0.2 films,” Appl. Phys. Lett., vol. 61, pp. 672-674, Aug. 1992.
Chapter 4 [4.1] T. H. Ning, “Hot-electron emission currents in n-channel IGFET's,” in IEDM Tech. Dig., 1997, pp. 144-147. [4.2] P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in n-channel IGFETs,” IEEE J. of Solid-State Circuits, vol. 14, pp. 442-455, Apr. 1979. [4.3] E. Takeda and N. Suzuki, “An empirical model for device degradation due to hot-carrier injection,” IEEE Electron Device Lett., vol. 4, pp. 111-113, Arp. 1983. [4.4] E. Takeda, H. Kume, Y. Nakagome, T. Makino, A. Shimizu, and S. Asai, “An As-P(n+-n-) double diffused drain MOSFET for VLSI's,” in IEEE Trans. Electron Devices, vol. 30, pp. 652-657, Jun. 1983. [4.5] A. G. Lewis, I. -W. Wu, T. Y. Huang, A. Chiang, and R. H. Bruce, “Active matrix liquid crystal display design using low and high temperature processed polysilicon TFTs.” in IEDM Tech. Dig., 1990, pp.843-846. [4.6] M. G. Clark, “Current status and future prospects of poly-Si devices,” IEE Proceedings - Circuits, Devices and Systems, vol. 141, pp. 3-8, Feb. 1994. [4.7] G. Fortunato, “Polycrystalline silicon thin-film transistors: A continuous evolving technology,” Thin Solid Films, vol. 296, pp. 82-90, Mar. 1997. [4.8] S. H. Jung, W. J. Nam, J. H. Lee, J. H. Jeon, and M. K. Han, “A new low-power pMOS poly-Si inverter for AMDs,” IEEE Electron Device Lett., vol. 26, pp. 23-25, Jan. 2005. [4.9] Y. Uraoka, T. Hatayama, T. Fuyuki, T. Kawamura, and Y. Tsuchihashi, “Reliability of low temperature poly-silicon tfts under inverter operation,” IEEE Trans. Electron Devices, vol.48, pp.2370-2374, Oct. 2001. [4.10] I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis, and A. Chiang, “Mechanism of device degradation in n-channel and p-channel polysilicon TFTs by electrical stressing,” IEEE Electron Device Lett., vol. 11, pp. 167-169, Apr. 1990. [4.11] T. Yoshida, K. Yoshino, M. Takei, A. Hara, N. Sasaki and T. Tsuchiya, “Experimental evidence of grain-boundary related hot-carrier degradation mechanism in low-temperature poly-Si thin-film-transistors,” in IEDM Tech. Dig., 2003, pp. 8.8.1-8.8.4. [4.12] A. T. Hatzopoulos, D. H. Tassis, N. A. Hastas, C. A. Dimitriadis and G. Kamarinos, “An analytical hot-carrier induced degradation model in polysilicon TFTs,” IEEE Trans. Electron Devices, vol. 52, pp. 2182-2187, Oct. 2005. [4.13] F. V. Farmakis, J. Brini, G. Kamarinos and C. A. Dimitriadis, “Anomalous turn-on voltage degradation during hot-carrier stress in polycrystalline silicon thin-film transistors,” IEEE Electron Device Lett., vol. 22, pp. 74-76, Feb. 2001. [4.14] T. -F. Chen, C. -F. Yeh, and J. -C. Lou, “Effects of grain boundaries on performance and hot-carrier reliability of excimer-laser annealed polycrystalline silicon Thin film transistors,” J. of Appl. Phys., vol. 95, pp. 5788-5794, May 2004. [4.15] K. C. Moon, J. -H. Lee, and M. -K. Han, “The study of hot-carrier stress on poly-Si TFT employing C–V measurement,” IEEE Trans. Electron Devices, vol. 52, pp. 512-517, Apr. 2005. [4.16] Y. Uraoka, T. Hatayama, T. Fuyuki, T. Kawamura and Y. Tsuchhashi, “Analysis of hot carrier effects in low temperature poly-Si TFTs using device simulator,” in Proc. IEEE 2001 Int. Conference on Microelectronic Test Structures, vol. 14, pp.251-256. [4.17] Y. Uraoka, N. Hirai, H. Yano, T. Hatayama, and T. Fuyuki, “Analysis of reliability in low temperature poly-Si thin film transistors using pico-second time resolved emission microscope,” in IEDM Tech. Dig., 2002, pp. 577-580. [4.18] Y. Toyota, T. Shiba, and M. Ohkura, “A new model for device degradation in low-temperature n-channel polycrystalline silicon TFTs under AC stress,” IEEE Trans. Electron Devices, vol. 51, pp. 927-933, Jun. 2004. [4.19] D.N. Kouvatsos and D. Davazoglou, “Gate/drain bias-induced degradation effects in TFTs fabricated in unhydrogenated SPC polycrystalline silicon films,” Thin Solid Films, vol. 426, pp. 250-257, Feb. 2003. [4.20] M. Cao, T. J. King, and K. C. Saraswat, “Determination of the densities of gap states in hydrogenated polycrystalline Si and Si0.8Ge0.2 films,” Appl. Phys. Lett., vol. 61, pp. 672-674, Aug. 1992. [4.21] Y. J. Tung, X. Huang, T. J. King, J. Boyce, and J. Ho, “Improved DC reliability of polysilicon thin-film transistors with deuterium plasma treatment,” in SID Symp. Dig. of Tech. Papers, 1999, vol. 30, pp. 398-401. [4.22] M. -J. Tsai, F. -S. Wang, K. -L. Cheng, S. -Y. Wang, M. -S. Feng and H. -C. Cheng, “Characterization of H2/N2 plasma passivation process for poly-Si thin film transistors (TFTs),” Solid-State Electronics, vol. 38, pp. 1233-1238, Jun. 1995. [4.23] H. -C. Cheng, F. -S. Wang, and C. -Y. Huang, “Effects of NH3 Plasma Passivation on N-Channel Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 64-68, Jan. 1997.. [4.24] I. -W. Wu, A. G. Lewis, T. -Y. Huang, and A. Chiang, “Effects of trap-state density reduction by plasma hydrogenation in low-temperature polysilicon TFT,” IEEE Electron Device Lett., vol. 10, pp. 123-125, Mar. 1989. [4.25] T. J. King, M. G. Hack, and I. W. Wu, “Effective density-of-states distributions for accurate modeling of polycrystalline-silicon thin-film transistors,” J. of Appl. Phys., vol. 75, pp. 908-913, Jan. 1994. [4.26] K. Y. Choi, J. S. Yoo, M. K. Han, and Y. S. Kim, “Hydrogen passivation on the grain boundary and intragranular defects in various polysilicon thin-film transistors,” Jpn. J. of Appl. Phys., vol. 35, pp. 915-918, Feb. 1996. [4.27] I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis, and A. Chiang, “Mechanism of device degradation in n- and p-channel polysilicon TFT’s by electrical stressing,” IEEE Electron Device Lett., vol. 11, pp. 167-170, Apr. 1990.
Chapter 5 [5.1] S. Uchikoga, “Low-temperature polycrystalline silicon thin-film transistor technologies for system-on-glass displays,” MRS Bulletin, vol. 27, pp. 881-886, Nov. 2002. [5.2] M. C. McAlpine, R. S. Friedman, S. Jin, K. H. Lin, W. U. Wang, and C. M. Lieber, “High-performance nanowire electronics and photonics on glass and plastic substrates,” Nano Lett., vol. 3, pp. 1531-1535, Nov. 2003 [5.3] J. R. Ayres, N. D. Young, “Hot-carrier effects in devices and circuits formed from Poly-Si,” IEE Proceedings - Circuits Devices and Systems, vol. 141, pp. 38-44, Feb. 1994. [5.4] Y. Uraoka, K. Kitajima, H. Kirimura, H. Yano, T. Hatayama and T. Fuyuki, “Degradation in low-temperature poly-si thin film transistors depending on grain boundaries,” Jpn. J. of Appl. Phys., vol. 44, pp. 2895-2901, May 2005. [5.5] Y. Uraoka, T. Hatayama, T. Fuyuki, T. kawamura, and Y. Tsuchihashi, “Reliability of high-frequency operation of low-temperature polysilicon thin film transistors under dynamic stress,” Jpn. J. of Appl. Phys., vol. 39, pp. L1209-L1212, Dec. 2000. [5.6] Y. Uraoka, T. Hatayama, and T. Fuyushi, “Reliability evaluation method of low temperature poly-silicon TFTs using dynamic stress,” in IEEE Intl. Conf. on Microelectronic Test Structures, 2000, pp. 158-162. [5.7] Y. Uraoka, T. Hatayama, T. Fuyushi, T. Kawamura, and T. Tsuchihashi, “Reliability of low temperature poly silicon tfts under inverter operation,” IEEE Trans. Electron Devices, vol. 48, pp. 2370-2374, Oct. 2001. [5.8] Y. Uraoka, H. Yano, T. Hatayama, and T. Fuyuki, “Comprehensive study on reliability of low temperature poly-Si thin-film transistors under dynamic complimentary metal oxide semiconductor operations,” Jpn. J. of Appl. Phys., vol. 41, pp. L2414-L2418, Apr. 2002 [5.9] Y. Uraoka, N. Hirai, H. Yano, T. Hatayama, and T. Fuyuki, “Analysis of reliability in low temperature poly-Si thin film transistors using pico-second time resolved emission microscope,” in IEDM Tech. Dig., 2002, pp. 577-580. [5.10] Y. Uraoka, N. Hirai, H. Yano, T. Hatayama, and T. Fuyushi, “New evaluation method of reliability of poly-Si thin film transistors using pico-second time-resolved emission microscope,” in IEEE Intl. Conf. on Microelectronic Test Structures, 2003, pp. 173-177. [5.11] Y. Toyota, T. Shiba, and M. Ohkura, “A new model for device degradation in low-temperature n-channel polycrystalline silicon TFTs under AC stress,” IEEE Trans. Electron Devices, vol. 51, pp. 927-933, Jun. 2004. [5.12] Y. Toyota, T. Shiba, and M. Ohkura, “Mechanism of device degradation under AC stress in low-temperature polycrystalline silicon TFTs,” in IEEE Intl. Reliability Phys. Symp., 2002, pp. 278-282. [5.13] K. M. Chang, Y. H. Chung, and G. M. Lin, “Hot carrier induced degradation in the low temperature processed polycrystalline silicon thin film transistors using the dynamic stress,” Jpn. J. of Appl. Phys., vol. 41, pp. 1941-1946, Apr. 2002.
Chapter 6 [6.1] Y. Uraoka, T. Hatayama, T. Fuyuki, T. Kawamura, and Y. Tsuchihashi, “Reliability of low temperature poly-silicon TFTs under inverter operation,” IEEE Trans. Electron Devices, vol.48, pp.2370-2374, Oct. 2001. [6.2] I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis, and A. Chiang, “Mechanism of device degradation in n-channel and p-channel polysilicon TFTs by electrical stressing,” IEEE Electron Device Lett., vol. 11, pp. 167-169, Apr. 1990. [6.3] Y. Jeong, D. Nagashima, H. Kuwano, T. Nouda, and H. Hamada, “Mechanisms of electrical stress-induced degradation in H2/plasma hydrogenated n- and p-channel polysilicon thin film transistors,” Jpn. J. of Appl. Phys., vol. 41, pp. 5042-5047, Aug. 2002. [6.4] B. Doyle, M. Bourcerie, J. -C. Marchetaux, and A. Boudou, “Interface state creation and charge trapping in the medium-to-high gate voltage range (Vd/2 ≥ Vg ≥ Vd) during hot-carrier stressing of n-MOS transistors,” IEEE Trans. Electron Devices, vol. 37, pp. 744-754, Mar. 1990. [6.5] T. Yoshida, K. Yoshino, M. Takei, A. Hara, N. Sasaki and T. Tsuchiya, “Experimental evidence of grain-boundary related hot-carrier degradation mechanism in low-temperature poly-Si thin-film-transistors,” in IEDM Tech. Dig., 2003, pp. 8.8.1-8.8.4. [6.6] T. -F. Chen, C. -F. Yeh, and J. -C. Lou, “Effects of grain boundaries on performance and hot-carrier reliability of excimer-laser annealed polycrystalline silicon thin film transistors,” J. of Appl. Phys., vol. 95, pp. 5788-5794, May 2004. [6.7] K. C. Moon, J. -H. Lee, and M. -K. Han, “The study of hot-carrier stress on poly-Si TFT employing C–V measurement,” IEEE Trans. Electron Devices, vol. 52, pp. 512-517, Apr. 2005. [6.8] Y. Uraoka, T. Hatayama, T. Fuyuki, T. Kawamura and Y. Tsuchhashi, “Analysis of hot carrier effects in low temperature poly-Si TFTs using device simulator,” in Proc. IEEE 2001 Int. Conference on Microelectronic Test Structures, vol. 14, pp.251-256. [6.9] A. T. Hatzopoulos, D. H. Tassis, N. A. Hastas, C. A. Dimitriadis and G. Kamarinos, “An analytical hot-carrier induced degradation model in polysilicon TFTs,” IEEE Trans. Electron Devices, vol. 52, pp. 2182-2187, Oct. 2005. [6.10] Y. Uraoka, N. Hirai, H. Yano, T. Hatayama, and T. Fuyuki, “Analysis of reliability in low temperature poly-Si thin film transistors using pico-second time resolved emission microscope,” in IEDM Tech. Dig., 2002, pp. 577-580. [6.11] W. B. Jackson, N. M. Johnson, and D. K. Biegelsen, “Density of gap states of silicon grain boundaries determined by optical absorption,” Appl. Phys. Lett., vol. 43, pp. 195-197, Jul. 1983. [6.12] B. Faughnan, “Subthreshold model of a polycrystalline silicon thin-film field-effect transistor,” Appl. Phys. Lett., vol. 50, pp. 290-292, Feb. 1987. [6.13] M. Cao, T. J. King, and K. C. Saraswat, “Determination of the densities of gap states in hydrogenated polycrystalline Si and Si0.8Ge0.2 films,” Appl. Phys. Lett., vol. 61, pp. 672-674, Aug. 1992. [6.14] T. J. King, M. G. Hack, and I. W. Wu, “Effective density-of-states distributions for accurate modeling of polycrystalline-silicon thin-film transistors,” J. of Appl. Phys., vol. 75, pp. 908-913, Jan. 1994. [6.15] G. Fortunato, D. B. Meakin, P. Migliorato, and P. G. Lecomber, “Field-effect analysis for the determination of gap-state density and Fermi-level temperature dependence in polycrystalline silicon,” Philos. Mag. B., vol. 57, pp. 573-586, May 1988. [6.16] J. Werner and M. Peisl, “Exponential band tails in polycrystalline semiconductor-flims,” Phys. Review B, vol. 31 pp. 6881-6883, May 1985. [6.17] H. Ikeda, “Evaluation of grain boundary trap states in polycrystalline-silicon thin-film transistors by mobility and capacitance measurements,” J. of Appl. Phys., vol. 91, pp. 4637-4645, Apr. 1992. [6.18] J. R Ayres, “Characterization of trapping states in polycrystalline-silicon thin film transistors by deep level transient spectroscopy,” J. of Appl. Phys., vol. 74, pp. 1787-1792, Aug. 1993. [6.19] T. Suzuki, Y. Osaka, and M. Hirose, “Theoretical interpretations of the gap state density determined from the field effect and capacitance-voltage characteristics of amorphous semiconductor,” Jpn. J. of Appl. Phys., vol. 21, pp. L159-L161, Mar. 1982. [6.20] G. Fortunato and P. Migliorato, “Determination of gap state density in polycrystalline silicon by field-effect conductance,” Appl. Phys. Lett., vol. 49, pp. 1025-1027, Oct. 1986. [6.21] R. L. Weisfield and D. A. Anderson, “An improved field-effect analysis for the determination of the pseudogap-state density in amorphous-semiconductors,” Philos. Mag. B., vol. 44, pp. 83-93, Jan. 1981. [6.22] M. Hack and A. G. Lewis, “Physical models for degradation effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 890-897, May 1993. [6.23] C. A. Dimitriadis, M. Kimura, M. Miyasaka, S. Inoue, F. V. Farmakis, J. Brini, and G. Kamarinos, “Effect of grain boundaries on hot-carrier induced degradation in large grain polysilicon thin-film transistors,” Solid-State Electronics, vol. 44, pp. 2025-2051, Nov. 2000. Chapter 7 [7.1] I. H. Song, C. H. Kim, S. H. Kang, W. J. Nam, and M. K. Han, “A new multi-channel dual-gate poly-Si TFT employing excimer laser annealing recrystallization on pre-patterned a-Si thin film,” in IEDM Tech. Dig., 2002, pp. 561-564. [7.2] S. W. Lee, T. H. Ihn, and S. K. Joo, “Fabrication of high-mobility p-channel poly-Si thin film transistors by self-aligned metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, pp. 407-409, Aug. 1996. [7.3] C. J. Su, H. C. Lin, and T. Y. Huang, “High performance TFTs with Si nanowire channels fabricated by metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 27, pp. 582-584, Jul. 2006. [7.4] L. Mariucci, G. Fortunato, R. Carluccio, A. Pecora, S. Giovannini, F. Massussi, L. Colalongo and M. Valdinoci, “Determination of hot-carrier induced interface state density in polycrystalline silicon thin-film transistors,” J. Appl. Physics, vol.84, pp. 2341-2438, Aug. 1998. [7.5] A.T. Hatzopoulos, D.H. Tassis, N.A. Hastas, C.A. Dimitriadis and G. Kamarinos, “An analytical hot-carrier induced degradation model in polysilicon TFTs,” IEEE Trans. Electron Devices, vol. 52, pp. 2182-2187, Oct. 2005. [7.6] M. S. Rodder, and D. A. Antoniadis, “Hot-carrier effects in hydrogen-passivated p-channel polycrystalline-Si MOSFET's,” IEEE Trans. Electron Devices, vol. 34, pp. 1079-1083, May 1987. [7.7] K. Y. Lee, Y. K. Fang, C. W. Chen, K. C. Huang, M. S. Liang, and S. G. Wuu SG, “The anomalous behavior of hydrogenated/unhydrogenated polysilicon thin-film transistors under electric stress,” IEEE Electron Device Lett., vol. 18, pp. 382-384, Aug. 1997. [7.8] N. A. Hastas, C. A. Dimitriadis, J. Brini, and G. Kamarinos, “Hot-carrier-induced degradation in short p-channel nonhydrogenated polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 49, pp. 1552-1557, Sep. 2002. [7.9] Y. Toyota, M. Matsumura, M. Hatano, T. Shiba, and M. Ohkura, “A new study on the degradation mechanism in low-temperature p-channel polycrystalline silicon TFTs under dynamic stress,” IEEE Trans. Electron Devices, vol. 53, pp. 2280-2286, Sep. 2006. [7.10] T. N. Ruckmongathan, M. Govind, and G. Deepak, “Reducing power consumption in liquid-crystal displays,” IEEE Trans. Electron Devices, vol. 53, pp. 1559-1566, Jul. 2006. [7.11] Y. Uraoka, T. Hatayama, T. Fuyushi, T. Kawamura, and T. Tsuchihashi, “Reliability of low temperature poly silicon TFTs under inverter operation,” IEEE Trans. Electron Devices, vol. 48, pp. 2370-2374, Oct. 2001. [7.12] J. R. Ayres, N. D. Young, “Hot-carrier effects in devices and circuits formed from Poly-Si,” in IEE Proceedings - Circuits Devices and Systems, vol. 141, pp. 38-44, Feb. 1994. [7.13] J. C. Wang, E. Olthof, and W. Metselaar, “Hot-carrier degradation analysis based on ring oscillators,” Microelectronics and Reliability, vol. 46, pp. 1858-1863, Sep.-Nov. 2006.
|