跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 19:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江國誠
研究生(外文):Kuo-Cheng Chiang
論文名稱:高介電係數介電質在金氧金電容之研究
論文名稱(外文):The Investigation of Metal-Insulator-Metal Capacitor Using High-k as Dielectrics
指導教授:荊鳳德
指導教授(外文):Albert Chin
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:132
中文關鍵詞:金氧金高介電電容混和訊號類比高頻動態記憶體高功函數
外文關鍵詞:MIMHigh-kCapacitorMixed-signalanalogRFDRAMHigh work function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:469
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
在各種不同的被動元件中,金氧金電容經常被廣泛的應用在電路裡的去耦合、阻抗匹配與直流濾波器中﹔而且它們通常佔據了很大比例的電路面積。此外金氧金電容也是發展高密度動態記憶體中面臨的重要挑戰。記憶體電容是決定檢測訊號電壓、速度還有防止軟件誤差影響資料保存時間和耐久性的重要參數。而根據國際半導體技術藍圖制定會(ITRS),為了元件尺寸縮微和節省成本,金氧金電容的面積必須不斷的減少。
因為減低電容的厚度會增加不必要的漏電流以及惡化電容變化係數,所以使用高介電常數的介電層是唯一的解決方法。此外技術的趨勢在於發展同一種高介電材料應用於類比、射頻和動態記憶體嵌入式系統單晶片。所以高介電材料應用在金氧金電容從氮氧化矽 (k~4-7)、氧化鋁(k=10)、氧化鉿 (k~22)、氧化鉭 (k~25) 一直發展到氧化鈮 (k~40)。但是目前在這些材料中還無法同時達到在高電容密度下金氧金電容所需要的特性,例如低電壓和低電容變化係數。因此在這裡,我們發展出新的製程和超高介電係數的材料來改進金氧金電容,例如氧化鈦和氧化鉭的混合物、氧化鈦和氧化鉿的混合物(k~45-50)與鈦酸鍶(k~50-300) 。為了進一步改善這些介電質低能隙的缺點,應用高功函數鎳或銥的上電極可得到較佳的特性。如此在有限的熱預算下,不只高電容密度和低漏電還有低電容變化係數都可以同時實現。
除了基本的漏電流與低頻量測以外,我們另外量測了射頻電容的高頻散射參數。並運用數學模擬軟體,淬取出元件在不同頻率所具有的電容大小。除此我們還深入研究電容的傳導機制與電容變化跟電壓和溫度相關的成因,一些重要的因素如介電質跟電極間的介面層、能障、和表面粗糙度還有相關材料特性都在這篇論文中有透徹的討論,相信這對發展高特性金氧金電容會有很大的幫助。
Among various passive devices, metal-insulator-metal(MIM) capacitors are widely used for decoupling, impedance
matching and direct current (DC) filtering; they occupy a large fraction of circuit area. Moreover, one of the most critical challenges which gigabit density DRAM’s face will be MIM memory cell capacitance. Memory cell capacitance is the crucial parameter which determines the sensing signal voltage, sensing speed, data retention times and endurance against the soft error event. According to International Technology Roadmap for Semiconductors (ITRS), continuous down-scaling of the size of MIM capacitors is required to reduce chip size and the cost.
To meet these requirements high dielectric constant (k) materials provide the only solution, since decreasing the dielectric thickness to increase the capacitance density degrades both the leakage current and dC/C performance. Furthermore, it is also desirable to use the same high-k �� dielectric to meet all the Analog, RF and DRAM functions for embedded SoC. Therefore the high-k dielectrics used in MIM capacitors have evolved from SiON (k~4-7), Al2O3 (k=10), HfO2 (k~22), Ta2O5 (k~25) to Nb2O5 (k~40). However, the demonstration of MIM with these films is yet able to achieve properties such as nondispersive, good linearity and high breakdown with low leakage concomitantly, at high unit capacitance. Hence, we have developed novel process and very high-k materials, such as TiTaO, TiHfO (k~45-50) and STO (k~50-300) to advance this technology. To further improve small bandgap (Eg) in these dielectrics, a high work-function Ir or Ni (5.2 eV) electrode is used to give better performance. Therefore, not only high capacitance density, and low leakage current, but also small voltage- and temperature- dependence of capacitance are achieved under limited thermal budget for back-end integration.
In addition to the measurements of leakage current density and capacitance at low frequency, we also measured the S-parameters to investigate the characteristics of the MIM capacitors at RF regime. Using the simulation software, the capacitance of the device at different frequencies was extracted. Moreover, understandings of the mechanism of conductivity, voltage- and temperature-dependence of capacitance were studied, which are also useful in the development of advanced MIM devices. The related factors, such as barrier height, surface roughness, interfacial layer, and dielectric material properties should be concerned for improving MIM performance, which were also investigated in this thesis.
Contents
Abstract (in Chinese)……………………….…………i
Abstract (in English) ……………………..……… iii
Acknowledgement………………….………………………v
Contents……………………………………………………vi
Figure Captions…………………………………………viii
Table Captions……………………………………………xvi
Chapter 1 Introduction
1.1 Motivation to study MIM capacitors…….1
1.2 Motivation to study MIM capacitors using high-k���n dielectrics…………………………………….4
1.3 The measurement of the devices……….….5
1.4 Innovation and contribution……………….6
Chapter 2 High-k Ir/TiTaO/TaN Capacitors Suitable for Analog IC Applications
2.1 Introduction……………………………………12
2.2 Experimental…………….…………………….13
2.3 Results and discussion…………….………13
2.4 Conclusion………………………….…………16
Chapter 3 Very High Density (23fF/um2) RF MIM Capacitors Using High-k TiTaO as the Dielectric
3.1 Introduction……………………………………21
3.2 Experimental………………………………..…22
3.3 Results and discussion…………..…………23
3.4 Conclusion………………………………..……25
Chapter 4 Thermal Leakage Improvement by Using a High Work Function Ni Electrode in High-k TiHfO MIM Capacitors
4.1 Introduction………….……………………..…30
4.2 Experimental………….……………………..…31
4.3 Results and discussion………..……………32
A. Electrical C-V & J-V characteristic…….32
B. dC/C and VCC2 ………….…………………….32.���|�|
C. Current conduction mechanism…………….34
D. Performance comparison………………………36
5.4 Conclusion…………………………………..…37
Chapter 5 High Performance SrTiO3 Metal-Insulator-Metal Capacitors for Analog Applications
5.1 Introduction………..…………………..……46
5.2 Experimental…………………….………….…47
5.3 Results and discussion………………………48
A. Electrical C-V & J-V characteristic…. 48
B. Current conduction mechanism………………50�|�|�|�|
C. Material characterization…………………51
D. dC/C,VCC2,and TCC……………………………53
E. Performance comparison……………………55
5.4 Conclusion………………………………...…55
Chapter 6 Very High Density (44fF/um2) SrTiO3 MIM Capacitors for RF Applications
6.1 Introduction………..………………………69
6.2 Experimental…………………….………….70
6.3 Results and discussion……………………71
6.4 Conclusion……………………………….…74
Chapter 7 Use of a High Work-Function Ni Electrode to Improve the Stress Reliability of Analog SrTiO3 Metal-Insulator-Metal Capacitors
7.1 Introduction………..………………..……80
7.2 Experimental…………………….………….81
7.3 Results and discussion……………………82
7.4 Conclusion……………………………….…85

Chapter 8 Conclusion and Recommendation…………91

References……………………………….………………95
Vita………………………………..…………………128
Publication List……………………………………129
References
Chapter 1:
[1.1] T. Iida, M. Nakahara, S. Gotoh, and H. Akiba, “Precise capacitor structure suitable for submicron mixed analog/digital ASICs,” in Proc. IEEE Custom Integration Circuits Conf., 1990, pp. 18.5.1–18.5.4.
[1.2] A. S. St Onge, S. G. Franz, A. F. Puttlitz, A. Kalinoski, B. E. Johnson, and B. El-Kareh, “Design of precision capacitors for analog applications,” IEEE Trans. Compon., Hybrids, Manufact. Technol., vol. 15, no. 4, pp. 1064–1071, Dec. 1992.
[1.3] M. J. Chen and C. S. Hou, “A novel cross-coupled interpoly-oxide capacitor for mixed-mode CMOS processes,” IEEE Electron Device Lett., vol. 20, no. 7, pp. 360–362, Jul. 1999.
[1.4] C. Kaya, H. Tigelaar, J. Paterson, M. D. W. J. Fattaruso, D. Hester, S. Kiriakai, K. S. Tan, and F. Tsay, “Polycide/metal capacitors for high precision A/D converters,” in IEDM Tech. Dig., 1988, pp. 782–785.
[1.5] M. Miyamoto, T. Ishii, R. Nagai, T. Nishida, and K. Seki, “0.3 μm mixed analog/digital CMOS technology for low-voltage operation,” in Proc. IEEE Custom Integrated Circuits Conf., 1993, pp. 24.4.1–24.4.4.
[1.6] T. Ishii, M. Miyamoto, R. Nagai, T. Nishida, and K. Seki, “0.3 μm mixed analog/digital CMOS technology for low-voltage operation,” IEEE Trans. Electron Devices, vol. 41, no. 10, pp. 1837–1842, Oct. 1994.
[1.7] A. Kar-Roy, C. Hu, M. Racanelli, C. A. Compton, P. Kempt, G. Jolly, P. N. Sherman, J. Zheng, Z. Zhang, and A. G. Yin, “High density metal insulator metal capacitors using PECVD nitride for mixed signal and RF circuits,” in Proc. IEEE IITC, 1999, pp. 245–247.
[1.8] M. Armacost, A. Augustin, P. Felsner,Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, and K. Stein, “A high reliability metal insulator metal capacitor for 0.18 _m copper technology,” in IEDM Tech. Dig., 2000, pp. 157–160.
[1.9] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirneckec, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett., vol. 22, no. 5, pp. 230–232, May 2001.
[1.10] S. V. Huylenbroeck, S. Decoutere, R. Venegas, S. Jenei, and G.Winderickx, “Investigation of PECVD dielectric for nondispersive metal-insulator-metal capacitors,” IEEE Electron Device Lett., vol. 23, no. 4, pp.191–193, Apr. 2002.
[1.11] C. H. Ng, K.W. Chew, and S. F. Chu, “Characterization and comparison of PECVD silicon nitride and silicon oxynitride dielectric for MIM capacitors,” IEEE Electron Device Lett., vol. 24, no. 8, pp. 506–508, Aug.
[1.12] “RF and analog/mixed-signal technologies for wireless communications,” in International Technology Roadmap for Semiconductors 2004. San Jose, CA.
[1.13] C.-M. Hung, Y.-C. Ho, I.-C. Wu, and K. O, “High-Q capacitors implemented in a CMOS process for low-power wireless applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 505-511.
[1.14] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett., vol. 22, pp. 230-232, May 2001.
[1.15] C. H. Ng, K. W. Chew, and S. F. Chu, “Characterization and comparison of PECVD silicon nitride and silicon oxynitride dielectric for MIM capacitors,” IEEE Electron Device Lett., vol. 24, pp. 506-508, Aug. 2003.
[1.16] L. Y. Tu, H. L. Lin, L. L. Chao, D. Wu, C. S. Tsai, C. Wang, C. F. Huang, C. H. Lin, and J. Sun, “Characterization and comparison of high-k metal–insulator–metal (MIM) capacitors in 0.13 �慆 Cu BEOL for mixed-mode and RF applications,” in Symp. VLSI Tech. Dig., 2003, pp. 79–80.
[1.17] Z. Chen, L. Guo, M. Yu, and Y. Zhang, “A study of MIMIM on-chip capacitor using Cu/SiO2 interconnect technology,” IEEE Microwave and Wireless Components Lett., vol. 12, pp. 246-248, July 2002.
[1.18] C. Zhu, H. Hu, X. Yu, S. J. Kim, A. Chin, M. F. Li, B. J. Cho, and D. L. Kwong, “Voltage and temperature dependence of capacitance of high-k HfO2 MIM capacitors: a unified understanding and prediction,” in IEDM Tech. Dig., 2003, pp. 879-882.
[1.19] S. J. Kim, B. J. Cho, M.-F. Li, C. Zhu, A. Chin, and D. L. Kwong, “HfO2 and lanthanide-doped HfO2 MIM capacitors for RF/mixed IC applications,” in Symp. on VLSI Tech. Dig., 2003, pp. 77-78.
[1.20] S. J. Kim, B. J. Cho, S. J. Ding, M.-F. Li, M. B. Yu, C. Zhu, A. Chin, and D.-L. Kwong, “Engineering of voltage nonlinearity in high-k MIM capacitor for analog/mixed-Signal ICs,” in Symp. on VLSI Tech. Dig., 2004, pp. 218-219.
[1.21] H. Hu, S. J. Ding, H. F. Lim, C. Zhu, M.F. Li, S.J. Kim, X. F. Yu, J. H. Chen, Y. F. Yong, B. J. Cho, D.S.H. Chan, S. C. Rustagi, M. B. Yu, C. H. Tung, A. Du, D. My, P. D. Fu, A. Chin, and D. L. Kwong, “High performance HfO2-Al2O3 laminate MIM capacitors by ALD for RF and mixed signal IC applications,” in IEDM Tech. Dig., 2003, pp. 879-882.
[1.22] S. J. Kim, B. J. Cho, M.-F. Li, C. Zhu, A. Chin, and D. L. Kwong, “Lanthanide (Tb)-doped HfO2 for high density MIM Capacitors,” IEEE Electron Device Lett., vol. 24, pp. 442-444, July 2003.
[1.23] T. Ishikawa, D. Kodama, Y. Matsui, M. Hiratani, T. Furusawa, and D. Hisamoto, “High-capacitance Cu/Ta2O5/Cu MIM structure for SoC applications featuring a single-mask add-on process, in IEDM Tech. Dig., 2002, pp. 940-942.
[1.24] S. B. Chen, J. H. Lai, K. T. Chan, A. Chin, J. C. Hsieh, and J. Liu, “Frequency-dependent capacitance reduction in high-k AlTiOx and Al2O3 gate dielectrics from IF to RF frequency range,” IEEE Electron Device Lett., vol. 23, pp. 203-205, April 2002.
[1.25] C. H. Huang, M.Y. Yang, A. Chin, C. X. Zhu, M. F. Li, and D. L. Kwong, “High density RF MIM capacitors using High-�� AlTaOx dielectrics,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, 2003, pp. 507-510.
[1.26] M.Y. Yang, C.H. Huang, A. Chin, C. Zhu, B.J. Cho, M.F. Li, and D. L. Kwong, “Very high density RF MIM capacitors (17fF/μm2) using high-κ Al2O3 doped Ta2O5 dielectrics,” IEEE Microwave & Wireless Comp. Lett., vol. 13, pp. 431-433, Oct. 2003.
[1.27] S. J. Kim, B. J. Cho, M. B. Yu, M.-F. Li, Y.-Z. Xiong, C. Zhu, A. Chin, and D. L. Kwong, “High capacitance density (>17fF/μm2) Nb2O5 – based MIM capacitors for future RF IC applications,” in Symp. on VLSI Tech. Dig., 2005, pp. 56-57.

Chapter 2:
[2.1] C. H. Ng, K. W. Chew, J. X. Li, T. T. Tioa, L. N. Goh, and S. F. Chu,” Characterization and comparison of two metal-insulator-metal capacitor schemes in 0.13�慆 copper dual damascene metallization process for mixed-mode and RF application”, in IEDM Tech. Dig., 2002, pp.241-244.
[2.2] T. Ishikawa, D. Kodama, Y. Matsui, M. Hiratani, T. Furusawa, and D. Hisamoto,” High-capacitance Cu/Ta2O5/Cu MIM structure for SoC applications featuring a single-mask add-on process, in IEDM Tech. Dig., 2002, p. 940-942.
[2.3] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett., vol. 22, pp. 230-232, May 2001.
[2.4] M. Armacost, A. Augustin, P. Felsner,Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, and K. Stein, “A high reliability metal insulator metal capacitor for 0.18 �慆 copper technology,” in IEDM Tech. Dig., 2000, pp. 157-160.
[2.5] L. Y. Tu, H. L. Lin, L. L. Chao, D. Wu, C. S. Tsai, C. Wang, C. F. Huang, C. H. Lin, and J. Sun, “Characterization and comparison of high-k metal–insulator–metal (MIM) capacitors in 0.13um Cu BEOL for mixed-mode and RF applications,” in Symp. VLSI Tech. Dig., 2003, pp. 79–80.
[2.6] C. Zhu, H. Hu, X. F. Yu, S. J. Kim, A. Chin, M. F. Li, B. J. Cho, and D.-L. Kwong,” Voltage and temperature dependence of capacitance of high-k HfO2 MIM capacitors: a unified understanding and prediction,” in IEDM Tech. Dig., 2003, pp. 379-382.
[2.7] H. Hu, S. J. Ding, H. F. Lim, C. Zhu, M. F. Li, S. J. Kim, X. F. Yu, J. H. Chen, Y. F. Yong, B. J. Cho, D. S. H. Chan, S. C. Rustagi, M. B. Yu,C. H. Tung, A. Du, D. My, P. D. Foo, A. Chin, and D.-L. Kwong, “High performance ALD HfO2/Al2O3 laminate MIM capacitors for RF and mixed signal IC applications,” in IEDM Tech. Dig., 2003, pp. 879-882.
[2.8] S. J. Kim, B. J. Cho, M.-F. Li, C. Zhu, A. Chin, and D. L. Kwong, “HfO2 and Lanthanide-doped HfO2 MIM capacitors for RF/mixed IC applications,” in Symp. on VLSI Tech. Dig., 2003, pp. 77-78.
[2.9] S. J. Kim, B. J. Cho, S. J. Ding, M.-F. Li, M. B. Yu, C. Zhu, A. Chin, and D.-L. Kwong, “Engineering of voltage nonlinearity in high-k MIM capacitor for analog/mixed-Signal ICs,” in Symp. on VLSI Tech. Dig., 2004, pp. 218-219.
[2.10] M.Y. Yang, C. H. Huang, A. Chin, C. Zhu, M. F. Li, and D. L. Kwong, “High Density MIM Capacitors Using AlTaOx Dielectrics,” IEEE Electron Device Lett. vol. 24, pp. 306-308, May 2003.
[2.11] C. H. Huang, M.Y. Yang, A. Chin, C. X. Zhu, M. F. Li, and D. L. Kwong, “High density RF MIM capacitors using high-k AlTaOx dielectrics,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, vol. 1, pp. 507-510.
[2.12] M.Y. Yang, C.H. Huang, A. Chin, C. Zhu, B.J. Cho, M.F. Li, and D. L. Kwong, “Very high density RF MIM capacitors (17fF/μm2) using high-κ Al2O3 doped Ta2O5 dielectrics,” IEEE Microwave & Wireless Comp. Lett., vol. 13, pp. 431-433, Oct. 2003.
[2.13] S. B. Chen, J. H. Lai, K. T. Chan, A. Chin, J. C. Hsieh, and J. Liu, “Frequency-dependent capacitance reduction in high-k AlTiOx and Al2O3 gate dielectrics from IF to RF frequency range,” IEEE Electron Device Lett., vol. 23, pp. 203-205, April 2002.
[2.14] S. B. Chen, J. H. Lai, A. Chin, J. C. Hsieh, and J. Liu, “High Density MIM Capacitors Using Al2O3 and AlTiOx Dielectrics,” IEEE Electron Device Lett., pp. 185-188, April 2002.
[2.15] S. B. Chen, C. H. Lai, A. Chin, J. C. Hsieh, and J. Liu, “RF MIM Capacitors Using High-K Al2O3 and AlTiOx Dielectrics,” IEEE MTT-S Int. Microwave Symp. Dig., 2002, vol. 1, pp. 201-204.
[2.16] K. C. Chiang, C. H. Lai, Albert Chin, H. L. Kao and S. P. McAlister, and C. C. Chi, “Very High Density RF MIM Capacitor Compatible with VLSI,” in IEEE MTT-S Int. Microwave Symp. Dig., June 12-17, 2005 (in press).
[2.17] The International Technology Roadmap for Semiconductors: Semicond. Ind. Assoc., 2003.
[2.18] K.-S. Tan, S. Kiriake, M. de Wit, J. W. Fattaruso, C.-Y. Tsay, W. E. Matthews, and R. K. Hester, “Error correction techniques for high-performance differential A/D converters,” IEEE J. Solid-State Circuits, vol.25, pp. 1318-1327, Dec. 1990.

Chapter 3:
[3.1] C. H. Ng, K. W. Chew, J. X. Li, T. T. Tioa, L. N. Goh, and S. F. Chu,” Characterization and comparison of two metal-insulator-metal capacitor schemes in 0.13um copper dual damascene metallization process for mixed-mode and RF application”, in IEDM Tech. Dig., 2002, pp.241-244.
[3.2] C.-M. Hung, Y.-C. Ho, I.-C. Wu, and K. O, “High-Q capacitors implemented in a CMOS process for low-power wireless applications,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 505-511, 1998.
[3.3] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett., vol. 22, pp. 230-232, May 2001.
[3.4] C. H. Ng, K. W. Chew, and S. F. Chu, “Characterization and comparison of PECVD silicon nitride and silicon oxynitride dielectric for MIM capacitors,” IEEE Electron Device Lett., vol. 24, pp. 506-508, Aug. 2003.
[3.5] Z. Chen, L. Guo, M. Yu, and Y. Zhang, “A study of MIMIM on-chip capacitor using Cu/SiO2 interconnect technology,” IEEE Microwave and Wireless Components Lett., vol. 12, pp. 246-248, July 2002.
[3.6] C. Zhu, H. Hu, X. Yu, A. Chin, M. F. Li, and D. L. Kwong, “Dependences of VCC (voltage coefficient of capacitance) of high-k HfO2 MIM capacitors: an unified understanding and prediction,” in IEDM Tech. Dig., pp. 379-382, Dec. 2003.
[3.7] S. J. Kim, B. J. Cho, M.-F. Li, C. Zhu, A. Chin, and D. L. Kwong, “HfO2 and Lanthanide-doped HfO2 MIM capacitors for RF/mixed IC applications,” in Symp. on VLSI Tech. Dig., pp. 77-78, June 2003.
[3.8] S. J. Kim, B. J. Cho, S. J. Ding, M.-F. Li, M. B. Yu, C. Zhu, A. Chin, and D.-L. Kwong, “Engineering of voltage nonlinearity in high-k MIM capacitor for analog/mixed-Signal ICs,” in Symp. on VLSI Tech. Dig., pp. 218-219, June 2004.
[3.9] S. B. Chen, J. H. Lai, K. T. Chan, A. Chin, J. C. Hsieh, and J. Liu, “Frequency-dependent capacitance reduction in high-k AlTiOx and Al2O3 gate dielectrics from IF to RF frequency range,” IEEE Electron Device Lett., vol. 23, pp. 203-205, April 2002.
[3.10] M.Y. Yang, C.H. Huang, A. Chin, C. Zhu, B.J. Cho, M.F. Li, and D. L. Kwong, “Very high density RF MIM capacitors (17fF/μm2) using high-κ Al2O3 doped Ta2O5 dielectrics,” IEEE Microwave & Wireless Comp. Lett., vol. 13, pp. 431-433, Oct. 2003.
[3.11] C. H. Huang, M.Y. Yang, A. Chin, C. X. Zhu, M. F. Li, and D. L. Kwong, “High density RF MIM capacitors using high-�� AlTaOx dielectrics,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 507-510, June 2003.
[3.12] M.C. King, Z. M. Lai, C. H. Huang, C. F. Lee, D. S. Yu, C. M. Huang, Y. Chang and Albert Chin, “Modeling Finger Number Dependence on RF Noise to 10 GHz in 0.13um Node MOSFETs with 80nm Gate Length,” in IEEE RF-IC Symp. Dig., pp. 171-174, June 2004.
[3.13] K. T. Chan, A. Chin, C. M. Kwei, D. T. Shien, and W. J. Lin “Transmission Line Noise from Standard and Proton-Implanted Si,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 763-766, June 2001.

Chapter 4:
[4.1] H. Hu, S. J. Ding, H. F. Lim, C. Zhu, M.F. Li, S.J. Kim, X. F. Yu, J. H. Chen, Y. F. Yong, B. J. Cho, D.S.H. Chan, S. C. Rustagi, M. B. Yu, C. H. Tung, A. Du, D. My, P. D. Fu, A. Chin, and D. L. Kwong, “High performance HfO2-Al2O3 laminate MIM capacitors by ALD for RF and mixed signal IC applications,” in IEDM Tech. Dig., 2003, pp. 379-382.
[4.2] S. J. Kim, B. J. Cho, M. B. Yu, M.-F. Li, Y.-Z. Xiong, C. Zhu, A. Chin, and D. L. Kwong, “High capacitance density (>17fF/μm2) Nb2O5 – based MIM capacitors for future RF IC applications,” in Symp. on VLSI Tech. Dig., 2005, pp. 56-57.
[4.3] K. C. Chiang, Albert Chin, C. H. Lai, W. J. Chen, C. F. Cheng, B. F. Hung, and C. C. Liao, “Very high-κ and high density TiTaO MIM capacitors for analog and RF applications,” in Symp. on VLSI Tech. Dig., 2005, pp. 62-63.
[4.4] K. C. Chiang, C. C. Huang, Albert Chin, W. J. Chen, S. P. McAlister, H. F. Chiu, J. R. Chen, and C. C. Chi, “High-κ Ir/TiTaO/TaN capacitors suitable for analog IC applications,” IEEE Electron Device Lett., vol. 26, pp. 504-506, July 2005.
[4.5] K. C. Chiang, C. H. Lai, Albert Chin, T. J. Wang, H. F. Chiu, J. R. Chen, S. P. McAlister, and C. C. Chi, “Very high density (23fF/μm2) RF MIM capacitors using high-κ TiTaO as the dielectric,” IEEE Electron Device Lett., vol. 26, pp. 728-730, October 2005.
[4.6] K. C. Chiang, C. C. Huang, Albert Chin, W. J. Chen, H. L. Kao, M. Hong, and J. Kwo, “High Performance Micro-Crystallized TaN/SrTiO3/TaN Capacitors for Analog and RF Applications,” in Symp. on VLSI Technology, pp.126-127, 2006.
[4.7] C. H. Lai, Albert Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo and C. C. Chi, “Very Low Voltage SiO2/HfON/HfAlO/TaN Memory with Fast Speed and Good Retention,” in Symp. on VLSI Technology, pp.54-55, 2006.
[4.8] Y. K. Jeong, S. J. Won, D. K. Jwon, M. W. Song, W. H. Kim, O. H. Park ,J. H. Jeong, H. S. Oh, H. K. Kang, and K. P. Suh ,“High quality high-k MIM capacitors by Ta2O5/HfO2/Ta2O5 multilayered dielectric and NH3 plasma interface treatments for mixed-signal/RF applications ,” in Symp. on VLSI Technology, pp.222-223, 2004.
[4.9] C. H. Huang, D. S. Yu, A. Chin, W. J. Chen, C. X. Zhu, M.-F. Li, B. J. Cho, and D. L. Kwong, “Fully Silicided NiSi and Germanided NiGe Dual Gates on SiO2/Si and Al2O3/Ge-On-Insulator MOSFETs,” International Electron Devices Meeting Tech. Dig., pp. 319-322, Dec. 2003.
[4.10] K.-S. Tan, S. Kiriake, M. de Wit, J. W. Fattaruso, C.-Y. Tsay, W. E. Matthews, and R. K. Hester, “Error correction techniques for high-performance differential A/D converters,” IEEE J. Solid-State Circuits, vol.25, pp. 1318-1327, Dec. 1990.
[4.11] The International Technology Roadmap for Semiconductors: Semicond. Ind. Assoc., 2003.
[4.12] S. B. Chen, J. H. Lai, K. T. Chan, A. Chin, J. C. Hsieh, and J. Liu, “Frequency-dependent capacitance reduction in high-k AlTiOx and Al2O3 gate dielectrics from IF to RF frequency range,” IEEE Electron Device Lett., vol. 23, pp. 203-205, April 2002.
[4.13] C. H. Huang, M.Y. Yang, A. Chin, C. X. Zhu, M. F. Li, and D. L. Kwong, “High density RF MIM capacitors using High-�� AlTaOx dielectrics,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, 2003, pp. 507-510.
[4.14] S. Blonkowski, M. Regache, and A. Halimaou,”Investigation and modeling of the electrical properties of metal-oxide-metal structures formed from chemical vapor deposited Ta2O5 films,”Journal of Applied Physics, vol.90, No.3, pp.1501-1508, 2001.
[4.15] C. Zhu, H. Hu, X. Yu, S. J. Kim, A. Chin, M. F. Li, B. J. Cho, and D. L. Kwong, “Voltage and temperature dependence of capacitance of high-k HfO2 MIM capacitors: a unified understanding and prediction,” in IEDM Tech. Dig., 2003, pp. 879-882.
[4.16] Lampert and Mark, Current Injection in Solids, 1970.
[4.17] K. Kao and W. Hwang, Electrical Transport in Solids, 1981.
[4.18] D. Lamp, Electrical Conduction Mechanisms in Thin Insulating Films, 1967.
[4.19] Q. Fang, J. Y. Zhang, Z. M. Wang, J. X. Wu, B. J. O’Sullivan, P. K. Hurley, T. L. Leedham, H. Davies, M. A. Audier, C. Jimenez, J. P. Senateur, Ian W. Boyd, “Investigation of TiO2 –doped HfO2 thin films deposited by photo-CVD”, Thin Solid Films, vol.428, pp. 263-268, 2003.
[4.20] A. Palil, Handbook of Optical Constants, Academic Press, New York, 1985
[4.21] X. Yu, C. Zhu, H. Hu, A.Chin, M. F. Li, B. J. Cho, D.-L. Kwong, P. D. Foo, and M. B. Yu,” A high-density MIM capacitor (13fF/μm2) using ALD HfO2 dielectrics,” IEEE Electron Device Lett., vol. 24, pp. 63-65, Feb. 2003.
[4.22] S. J. Kim, B. J. Cho, M.-F. Li, C. Zhu, A. Chin, and D. L. Kwong, “HfO2 and lanthanide-doped HfO2 MIM capacitors for RF/mixed IC applications,” in Symp. on VLSI Tech. Dig., 2003, pp. 77-78.
[4.23] K. C. Chiang, C. C. Huang, Albert Chin, G. L. Chen, W. J. Chen, Y. H. Wu, Albert Chin, S. P. McAlister, “High performance SrTiO3 Metal-Insulator-Metal Capacitors for analog Applications,” IEEE trans. on Electron Devices., vol. 53, No.9, Sept. 2006, pp.2312-2319.
[4.24] S. J. Ding, H. Hu, C. Zhu, S. J. Kim, X. Yu, M. F. Li, B. J. Cho, S. H. Chan, M. B. Yu, S. C. Rustagi, A. Chin, and D. L. Kwong, “RF, DC, and reliability characteristics of ALD HfO2-Al2O3 laminate MIM capacitors for Si RF IC applications,” IEEE trans. on Electron Devices., vol.51, No.6, June 2004, pp. 886-894.

Chapter 5:
[5.1] International Technology Roadmap for Semiconductors (ITRS), 2005 Edition www.itrs.net
[5.2] C.-M. Hung, Y.-C. Ho, I.-C. Wu, and K. O, “High-Q capacitors implemented in a CMOS process for low-power wireless applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 505-511.
[5.3] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett., vol. 22, pp. 230-232, May 2001.
[5.4] C. H. Ng, K. W. Chew, and S. F. Chu, “Characterization and comparison of PECVD silicon nitride and silicon oxynitride dielectric for MIM capacitors,” IEEE Electron Device Lett., vol. 24, pp. 506-508, Aug. 2003.
[5.5] L. Y. Tu, H. L. Lin, L. L. Chao, D. Wu, C. S. Tsai, C. Wang, C. F. Huang, C. H. Lin, and J. Sun, “Characterization and comparison of high-k metal–insulator–metal (MIM) capacitors in 0.13um Cu BEOL for mixed-mode and RF applications,” in Symp. VLSI Tech. Dig., 2003, pp. 79–80.
[5.6] Z. Chen, L. Guo, M. Yu, and Y. Zhang, “A study of MIMIM on-chip capacitor using Cu/SiO2 interconnect technology,” IEEE Microwave and Wireless Components Lett., vol. 12, pp. 246-248, July 2002.
[5.7] C. Zhu, H. Hu, X. Yu, S. J. Kim, A. Chin, M. F. Li, B. J. Cho, and D. L. Kwong, “Voltage and temperature dependence of capacitance of high-k HfO2 MIM capacitors: a unified understanding and prediction,” in IEDM Tech. Dig., 2003, pp. 879-882.
[5.8] S. J. Kim, B. J. Cho, M.-F. Li, C. Zhu, A. Chin, and D. L. Kwong, “HfO2 and lanthanide-doped HfO2 MIM capacitors for RF/mixed IC applications,” in Symp. on VLSI Tech. Dig., 2003, pp. 77-78.
[5.9] S. J. Kim, B. J. Cho, S. J. Ding, M.-F. Li, M. B. Yu, C. Zhu, A. Chin, and D.-L. Kwong, “Engineering of voltage nonlinearity in high-k MIM capacitor for analog/mixed-Signal ICs,” in Symp. on VLSI Tech. Dig., 2004, pp. 218-219.
[5.10] H. Hu, S. J. Ding, H. F. Lim, C. Zhu, M.F. Li, S.J. Kim, X. F. Yu, J. H. Chen, Y. F. Yong, B. J. Cho, D.S.H. Chan, S. C. Rustagi, M. B. Yu, C. H. Tung, A. Du, D. My, P. D. Fu, A. Chin, and D. L. Kwong, “High performance HfO2-Al2O3 laminate MIM capacitors by ALD for RF and mixed signal IC applications,” in IEDM Tech. Dig., 2003, pp. 879-882.
[5.11] S. J. Kim, B. J. Cho, M.-F. Li, C. Zhu, A. Chin, and D. L. Kwong, “Lanthanide (Tb)-doped HfO2 for high density MIM Capacitors,” IEEE Electron Device Lett., vol. 24, pp. 442-444, July 2003.
[5.12] T. Ishikawa, D. Kodama, Y. Matsui, M. Hiratani, T. Furusawa, and D. Hisamoto, “High-capacitance Cu/Ta2O5/Cu MIM structure for SoC applications featuring a single-mask add-on process, in IEDM Tech. Dig., 2002, pp. 940-942.
[5.13] S. B. Chen, J. H. Lai, K. T. Chan, A. Chin, J. C. Hsieh, and J. Liu, “Frequency-dependent capacitance reduction in high-k AlTiOx and Al2O3 gate dielectrics from IF to RF frequency range,” IEEE Electron Device Lett., vol. 23, pp. 203-205, April 2002.
[5.14] C. H. Huang, M.Y. Yang, A. Chin, C. X. Zhu, M. F. Li, and D. L. Kwong, “High density RF MIM capacitors using High-�� AlTaOx dielectrics,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, 2003, pp. 507-510.
[5.15] M.Y. Yang, C.H. Huang, A. Chin, C. Zhu, B.J. Cho, M.F. Li, and D. L. Kwong, “Very high density RF MIM capacitors (17fF/μm2) using high-κ Al2O3 doped Ta2O5 dielectrics,” IEEE Microwave & Wireless Comp. Lett., vol. 13, pp. 431-433, Oct. 2003.
[5.16] S. J. Kim, B. J. Cho, M. B. Yu, M.-F. Li, Y.-Z. Xiong, C. Zhu, A. Chin, and D. L. Kwong, “High capacitance density (>17fF/μm2) Nb2O5 – based MIM capacitors for future RF IC applications,” in Symp. on VLSI Tech. Dig., 2005, pp. 56-57.
[5.17] K. C. Chiang, C. H. Lai, Albert Chin, T. J. Wang, H. F. Chiu, J. R. Chen, S. P. McAlister, and C. C. Chi, “Very high density (23fF/μm2) RF MIM capacitors using high-κ TiTaO as the dielectric,” IEEE Electron Device Lett., vol. 26, pp. 728-730, October 2005.
[5.18] K. C. Chiang, Albert Chin, C. H. Lai, W. J. Chen, C. F. Cheng, B. F. Hung, and C. C. Liao, “Very high-κ and high density TiTaO MIM capacitors for analog and RF applications,” in Symp. on VLSI Tech. Dig., 2005, pp. 62-63.
[5.19] K. C. Chiang, C. C. Huang, Albert Chin, W. J. Chen, S. P. McAlister, H. F. Chiu, J. R. Chen, and C. C. Chi, “High-κ Ir/TiTaO/TaN capacitors suitable for analog IC applications,” IEEE Electron Device Lett., vol. 26, pp. 504-506, July 2005.
[5.20] J. Nakahira, M. Kiyotoshi, S. Yamazaki, M. Nakabayashi, S. Niwa, K. Tsunoda, J. Lin, A. Shimada, M. Izuha, T. Aoyama, H. Tomita, K. Eguchi, and K. Hieda, “ Low temperature (<500oC) SrTiO3 capacitor process technology for embedded DRAM ,” in Symp. on VLSI Tech. Dig., 2000, pp. 104-105.
[5.21] P-Y. Lesaicherre, S. Yamamichi, H. Yamaguchi, K. Takemura, H. Watanabe, K. Tokashiki, K. Satoh, T. Sakuma, M. Yoshida, S. Ohnishi, K. Nakajima, K. Shibahara, Y. Miyasaka, and H. Ono, “A gbit-scale DRAM stacked capacitor technology with ECR MOCVD SrTiO3 and RIE patterned RuO2/TiN storage nodes,” in IEDM Tech. Dig., 1994, pp. 831-834
[5.22] C.-J. Peng, H. Hu, and S. B. Krupanidhi., “Electrical properties of strontium titanate thin films by multi-ion-beam reactive sputtering technique,” Appl. Phys. Lett., vol. 63, no. 23, pp. 1038-1040, August 1993.
[5.23] S. W. Jiang, Q. Y. Zhang, Y. R. Li, Y. Zhang, X. F. Sun, B. Jiang, “Structural characteristics of SrTiO3 thin films processed by rapid thermal annealing,” Journal of Crystal Growth , vol. 274 , pp.500-505, 2005.
[5.24] S. Yamamichi, T. Sakuma, K. Takemura, Y. Miyasaka, “SrTiO3 thin film preparation by ion beam sputtering and its dielectric properties,” Jpn. J. Appl. Phys., vol. 30, pp. 2193-2196, September 1991.
[5.25] Jesse L. Cousins, David E. Kotecki, “Simulation of the variability in microelectronic capacitors having polycrystalline dielectrics,” IEEE Electron Device Lett., vol. 23, pp. 267-269, May 2002.
[5.26] F. Gervais, in: Handbook of Optical Constants of Solids Ⅱ, ed. E.D. Palik (Academic Press, New York, 1991) p.1035.
[5.27] K.-S. Tan, S. Kiriake, M. de Wit, J. W. Fattaruso, C.-Y. Tsay, W. E. Matthews, and R. K. Hester, “Error correction techniques for high-performance differential A/D converters,” IEEE J. Solid-State Circuits, vol. 25, pp. 1318-1327, Dec. 1990.
[5.28] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh,” Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett., vol. 22, pp. 230-232, May 2001.

Chapter 6:
[6.1] C. H. Ng, K. W. Chew, and S. F. Chu, “Characterization and comparison of PECVD silicon nitride and silicon oxynitride dielectric for MIM capacitors,” IEEE Electron Device Lett., vol. 24, pp. 506-508, Aug. 2003.
[6.2] L. Y. Tu, H. L. Lin, L. L. Chao, D. Wu, C. S. Tsai, C. Wang, C. F. Huang, C. H. Lin, and J. Sun, “Characterization and comparison of high-k metal–insulator–metal (MIM) capacitors in 0.13um Cu BEOL for mixed-mode and RF applications,” in Symp. VLSI Tech. Dig., 2003, pp. 79–80.
[6.3] Z. Chen, L. Guo, M. Yu, and Y. Zhang, “A study of MIMIM on-chip capacitor using Cu/SiO2 interconnect technology,” IEEE Microwave and Wireless Components Lett., vol. 12, pp. 246-248, July 2002.
[6.4] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett., vol. 22, pp. 230-232, May 2001.
[6.5] C.-M. Hung, Y.-C. Ho, I.-C. Wu, and K. O, “High-Q capacitors implemented in a CMOS process for low-power wireless applications,” IEEE Trans. on Microwave Theory Tech., vol. 46, pp. 505-511, May 1998.
[6.6] S. B. Chen, J. H. Lai, K. T. Chan, A. Chin, J. C. Hsieh, and J. Liu, “Frequency-dependent capacitance reduction in high-k AlTiOx and Al2O3 gate dielectrics from IF to RF frequency range,” IEEE Electron Device Lett., vol. 23, pp. 203-205, April 2002.
[6.7] S. B. Chen, J. H. Lai, A. Chin, J. C. Hsieh, and J. Liu, “High density MIM capacitors using Al2O3 and AlTiOx dielectrics,” IEEE Electron Device Lett., vol. 23, pp. 185-188, April 2002.
[6.8] C. H. Huang, M.Y. Yang, A. Chin, C. X. Zhu, M. F. Li, and D. L. Kwong, “High density RF MIM capacitors using high-�� AlTaOx Dielectrics,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, 2003, pp. 507-510.
[6.9] M.Y. Yang, C.H. Huang, A. Chin, C. Zhu, B.J. Cho, M.F. Li, and D. L. Kwong, “Very high density RF MIM capacitors (17fF/μm2) using high-κ Al2O3 doped Ta2O5 dielectrics,” IEEE Microwave & Wireless Comp. Lett., vol. 13, pp. 431-433, Oct. 2003.
[6.10] C. Zhu, H. Hu, X. Yu, A. Chin, M. F. Li, and D. L. Kwong, “Dependences of VCC (voltage coefficient of capacitance) of high-k HfO2 MIM capacitors: an unified understanding and prediction,” in IEDM Tech. Dig., 2003, pp. 379-382.
[6.11] S. J. Kim, B. J. Cho, M.-F. Li, C. Zhu, A. Chin, and D. L. Kwong, “HfO2 and Lanthanide-doped HfO2 MIM capacitors for RF/mixed IC applications,” in Symp. on VLSI Tech. Dig., 2003, pp. 77-78.
[6.12] S. J. Kim, B. J. Cho, M.-F. Li, S.-J. Ding, C. Zhu, M. B. Yu, B. Narayanan, A. Chin, and D.-L. Kwong, “Improvement of voltage linearity in high-�� MIM Capacitors using HfO2-SiO2 stacked dielectric,” IEEE Electron Device Lett., vol. 25, pp. 538-540, Aug. 2004.
[6.13] S. J. Kim, B. J. Cho, M. B. Yu, M.-F. Li, Y.-Z. Xiong, C. Zhu, A. Chin, and D. L. Kwong, “High capacitance density (>17fF/μm2) Nb2O5 – based MIM capacitors for future RF IC applications,” in Symp. on VLSI Tech. Dig., 2005, pp. 56-57.
[6.14] S. J. Kim, B. J. Cho, M. B. Yu, M. F. Li, Y. Z. Xiong, C. Zhu, A. Chin and D. L. Kwong, “Metal-insulator-metal RF bypass capacitor using niobium oxide (Nb2O5) with HfO/2/Al2O3 barriers,” IEEE Electron Device Lett. 26, pp. 625-627, Sept. 2005.
[6.15] K. C. Chiang, C. H. Lai, Albert Chin, T. J. Wang, H. F. Chiu, J. R. Chen, S. P. McAlister, and C. C. Chi, “Very high density (23fF/μm2) RF MIM capacitors using high-κ TiTaO as the dielectric,” IEEE Electron Device Lett., vol. 26, pp. 728-730, Oct. 2005.
[6.16] K. C. Chiang, Albert Chin, C. H. Lai, W. J. Chen, C. F. Cheng, B. F. Hung, and C. C. Liao, “Very high-κ and high density TiTaO MIM capacitors for analog and RF applications,” in Symp. on VLSI Tech. Dig., 2005, pp. 62-63.
[6.17] K. Kim, “Technology for sub-50nm DRAM and NAND Flash manufacturing,” in IEDM Tech. Dig., 2005, pp. 333-336
[6.18] K. C. Chiang, C. C. Huang, Albert Chin, G. L. Chen, W. J. Chen, Y. H. Wu, Albert Chin, S. P. McAlister, “High performance SrTiO3 Metal-Insulator-Metal Capacitors for analog Applications,” IEEE Trans. on Electron Devices., vol. 53, No.9, Sept. 2006, pp. 2312-2319.
[6.19] Nicolas Gaillard, Luc Pinzelli, and G-J Mickael,” In situ electric field simulation in metal/insulator/metal capacitors,” Appl. Phys. Lett., vol. 89, no.13, pp. 3506, Sept. 2006.
[6.20] P-Y. Lesaicherre, S. Yamamichi, H. Yamaguchi, K. Takemura, H. Watanabe, K. Tokashiki, K. Satoh, T. Sakuma, M. Yoshida, S. Ohnishi, K. Nakajima, K. Shibahara, Y. Miyasaka, and H. Ono, “A gbit-scale DRAM stacked capacitor technology with ECR MOCVD SrTiO3 and RIE patterned RuO2/TiN storage nodes,” in IEDM Tech. Dig., 1994, pp. 831-834.
[6.21] C.-J. Peng, H. Hu, and S. B. Krupanidhi., “Electrical properties of strontium titanate thin films by multi-ion-beam reactive sputtering technique,” Appl. Phys. Lett., vol. 63, no. 23, pp. 1038-1040, August 1993.
[6.22] F. Gervais, in: Handbook of Optical Constants of Solids Ⅱ, ed. E.D. Palik (Academic Press, New York, 1991) p.1035.
[6.23] M.C. King, Z. M. Lai, C. H. Huang, C. F. Lee, D. S. Yu, C. M. Huang, Y. Chang and Albert Chin, “Modeling finger number dependence on RF noise to 10 GHz in 0.13�慆 node MOSFETs with 80nm gate length,” in IEEE RF-IC Symp. Dig., 2004, pp. 171-174.

Chapter 7:
[7.1] The International Technology Roadmap for Semiconductors: Semicond. Ind. Assoc., 2005, www.itrs.net.
[7.2] H. Hu, S. J. Ding, H. F. Lim, C. Zhu, M.F. Li, S.J. Kim, X. F. Yu, J. H. Chen, Y. F. Yong, B. J. Cho, D.S.H. Chan, S. C. Rustagi, M. B. Yu, C. H. Tung, A. Du, D. My, P. D. Fu, A. Chin, and D. L. Kwong, “High performance HfO2-Al2O3 laminate MIM capacitors by ALD for RF and mixed signal IC applications,” in IEDM Tech. Dig., 2003, pp. 379-382.
[7.3] C. Zhu, H. Hu, X. Yu, S. J. Kim, A. Chin, M. F. Li, B. J. Cho, and D. L. Kwong, “Voltage and temperature dependence of capacitance of high-k HfO2 MIM capacitors: a unified understanding and prediction,” in IEDM Tech. Dig., 2003, pp. 879-882.
[7.4] S.-J. Ding, H. Hu, C. Zhu, S. J. Kim, X. Yu, M.-F. Li, B. J. Cho, D. S. H. Chan, M. B. Yu, S. C. Rustagi, A. Chin, and D.-L. Kwong, “RF, DC, and reliability characteristics of ALD HfO2-Al2O3 laminate MIM capacitors for Si RF IC applications,” IEEE Trans. Electron Devices, vol. 51, pp. 886-894, June 2004.
[7.5] K. Takeda, R. Yamada, T. Imai, T. Fujiwara, T. Hashimoto, and T. Ando, “DC-stress-induced degradation of analog characteristics in HfxAl(1-x)O MIM capacitors,” in IEDM Tech. Dig., 2006, pp. 359-362.
[7.6] S. J. Kim, B. J. Cho, M. B. Yu, M.-F. Li, Y.-Z. Xiong, C. Zhu, A. Chin, and D. L. Kwong, “High capacitance density (>17fF/μm2) Nb2O5 – based MIM capacitors for future RF IC applications,” in Symp. on VLSI Tech. Dig., 2005, pp. 56-57.
[7.7] K. C. Chiang, Albert Chin, C. H. Lai, W. J. Chen, C. F. Cheng, B. F. Hung, and C. C. Liao, “Very high-κ and high density TiTaO MIM capacitors for analog and RF applications,” in Symp. on VLSI Tech. Dig., 2005, pp. 62-63.
[7.8] K. C. Chiang, C. C. Huang, Albert Chin, W. J. Chen, S. P. McAlister, H. F. Chiu, J. R. Chen, and C. C. Chi, “High-κ Ir/TiTaO/TaN capacitors suitable for analog IC applications,” IEEE Electron Device Lett., vol. 26, pp. 504-506, July 2005.
[7.9] K. C. Chiang, C. H. Lai, Albert Chin, T. J. Wang, H. F. Chiu, J. R. Chen, S. P. McAlister, and C. C. Chi, “Very high density (23fF/μm2) RF MIM capacitors using high-κ TiTaO as the dielectric,” IEEE Electron Device Lett., vol. 26, pp. 728-730, October 2005.
[7.10] K. C. Chiang, C. C. Huang, Albert Chin, W. J. Chen, H. L. Kao, M. Hong, and J. Kwo, “High performance micro-crystallized TaN/SrTiO3/TaN capacitors for analog and RF applications,” in Symp. on VLSI Tech. Dig., 2006, pp. 126-127.
[7.11] K. C. Chiang, C. C. Huang, Albert Chin, G. L. Chen, W. J. Chen, Y. H. Wu, Albert Chin, S. P. McAlister, “High performance SrTiO3 metal-insulator-metal capacitors for analog applications,” IEEE Trans. Electron Devices, vol. 53, pp. 2312-2319, September 2006.
[7.12] K. C. Chiang, C. H. Cheng, H. C. Pan, C. N. Hsiao, C. P. Chou, Albert Chin, and H. L. Hwang, “High temperature leakage improvement in metal-insulator-metal capacitors by work-function tuning,” accepted for publication in IEEE Electron Device Lett.
[7.13] M. Iwabuchi and T. Kobayashi, “Growth and characterization of epitaxial SrTiO3 thin films with prominent polarizability,” J. Appl. Phys., vol. 75, pp. 5295-5301, May 1994
[7.14] K. Abe and S. Komatsu,” Epitaxial growth of SrTiO3 films on Pt electrodes and their electrical properties,” Jpn. J. Appl. Phys., vol. 31, pp. 2985-2988, September 1992.
[7.15] J Robertson, “Band offsets of wide-band-gap oxides and implications for future electron devices,” J Vac Sci Technol B, vol. 18, pp. 1785-1791, May 2000.
[7.16] K. Morito, T. Suzuki, S. Sekiguchi, H.o Okushi and M. Fujimoto, “Electrical characterization of SrTiO3 thin films grown on Nb-doped SrTiO3 single crystals,” Jpn. J. Apl. Phys., vol. 39, pp.166-171, 2000.
[7.17] C. H. Lai, Albert Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo and C. C. Chi, “Very low voltage SiO2/HfON/HfAlO/TaN memory with fast speed and good retention,” in Symp. on VLSI Tech. Dig., 2005, pp. 54-55.
[7.18] J. L. Cousins, and D. E. Kotecki, “Simulation of the variability in microelectronic capacitors having polycrystalline dielectrics,” IEEE Electron Device Lett., vol. 23, pp. 267-269, May 2002.

Chapter 8:
[8.1] Zhu, H. Hu, X. Yu, A. Chin, M. F. Li, and D. L. Kwong, “Dependences of VCC (voltage coefficient of capacitance) of high-k HfO2 MIM capacitors: an unified understanding and prediction,” in IEDM Tech. Dig., pp. 379-382, Dec. 2003.
[8.2] Kentaro Morito, Toshimasa Suzuki, Shoichi Sekiguchi, Hideyo Okushi, and Masayuki Fujimoto, “ Electrical characterization of SrTiO3 thin films grown on Nb-doped SrTiO3 single crystals,” Jpn. J. Appl. Phys. vol. 39, pp.166-171, 2000.
[8.3] Y. K. Jeong, S. J.Won, D. J. Kwon, M.W. Song, W. H. Kim, M. H. Park, J. H. Jeong, H. S. Oh, H. K. Kang, and K. P. Suh, “High quality high-k MIM capacitor by Ta2O5 /HfO2 /Ta2O5 multilayered dielectric and NH3 plasma interface treatments for mixed-signal /RF applications,” in Symp. VLSI Tech. Dig., pp. 222–223, 2004.
[8.4] S. J. Kim, B. J. Cho, S. J. Ding, M.-F. Li, M. B. Yu, C. Zhu, A. Chin, and D.-L. Kwong, “Engineering of voltage nonlinearity in high-k MIM capacitor for analog/mixed-Signal ICs,” in Symp. on VLSI Tech. Dig., pp. 218-219, June 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top