跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 18:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李致維 
研究生(外文):Chih-Wei Li
論文名稱:SONOS記憶體陣列中因二次熱電子引致寫入干擾之蒙地卡羅分析
論文名稱(外文):Monte Carlo Analysis of Secondary Hot Electrons Induced Program Disturb in SONOS Memory Array
指導教授:汪大暉
指導教授(外文):Tahui Wang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:40
中文關鍵詞:蒙地卡羅寫入干擾
外文關鍵詞:Monte CarloProgram Disturb
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文之重點在於利用蒙地卡羅模擬,來分析一種新產生的寫入干擾模式。為了節省元件面積,近年NOR型態的SONOS元件採用潛擴散式的位元線技術(Buried Diffusion Bit-lines)製作,其操作方式為熱電子寫入(CHEI)與熱電洞抹除(BTBHH)。而在元件尺寸越來越縮小之後,在此種元件寫入的過程中,發現鄰近的元件也同時會被寫入,形成干擾。此一干擾的原因為熱電子寫入的同時產生的二次熱電子,透過蒙地卡羅模擬,也得到了與實驗趨勢相符的結果。最後,針對元件尺寸繼續縮小對此一寫入干擾的影響也有所評估。
This thesis is focused on a new program disturb in a two-bit storage buried diffusion bit-line SONOS flash memory. In a NOR-type SONOS flash memory, channel hot electron program and band-to-band hot hole erase are usually employed. In channel hot electron program operation, channel hot electrons will cause impact ionizations. Generated holes from impact ionizations will be accelerated by the drain-to-substrate voltage and cause second impact ionization. The second impact ionization generated electrons, referred to as secondary electrons, may flow to a neighboring cell and cause a program disturb. In this thesis, a multi-step Monte Carlo simulation is used to explore this mechanism for it can accurately obtain the high energy tail of the secondary electron distribution function. Both electron and hole Monte Carlo simulations in this thesis include a full-band structure. In addition, the effects of substrate bias, bit-line dimension and pocket implant on the program disturb will be characterized and evaluated by a Monte Carlo simulation.
Chinese Abstract i
English Abstract ii
Acknowledgements iii
Contents iv
Figure Captions vi
Chapter 1 Introduction 1
Chapter 2 Array Structure and Operations of SONOS Flash Memory 3
2.1 Introduction 3
2.2 Buried Diffusion Bit-Line SONOS Memory 3
2.3 Operation Modes 3
Chapter 3 New Program Disturb in a SONOS Array 7
3.1 Introduction 7
3.2 Channel Initiated Secondary Electron Programming 7
3.3 Disturbance due to CHISEL 8
3.3.1 Second Bit Effect 8
3.3.2 Disturbance in Neighboring Cell 12
Chapter 4 Monte Carlo Analysis of Program Disturb 16
4.1 Introduction 16
4.2 Procedure of Monte Carlo Device Simulation 16
4.3 Results and Discussions 23
4.3.1 Analysis of Impact Ionization 23
4.3.2 Energy and Space Distributions of Injected Charges 23
4.3.3 Relative Charge Injection Rate 28
4.3.4 Substrate Bias Effect 28
4.3.5 Scaling Issues 28
Chapter 5 Conslusions 37
References 38
References

[1] M. L. French and M. H. White, “Scaling of multidielectric nonvolatile SONOS memory structures,” Solid State Electronics, vol. 37, p. 1913, 1995.
[2] Y. L. Yang, A. Purwar and M. H. White, “Reliability considerations in scaled SONOS nonvolatile memory devices,” Solid State Electronics, vol. 43, p. 2025, 1999.
[3] M. H. White, et al., “A low voltage SONOS nonvolatile semiconductor memory technology,” NVSM, p. 52, 1996.
[4] Y. L. Yang and M. H. White, “Charge retention of scaled SONOS nonvolatile memory devices at elevated temperatures,” Solid State Electronics, vol. 44, p. 949, 2000.
[5] B. Eitan, et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE Elect. Dev. Lett., vol. 21, p. 543, 2000.
[6] B. Eitan, “Non-Volatile semiconductor cell utilizing asymmetrical charge trapping,” U. S. Patent 5 768192, June 16, 1998.
[7] M. K. Cho and D. M. Kim, “High Performance SONOS Memory Cells Free of Drain Turn-On and Over-Erase: Compatibility Issue with Current Flash Technology,” IEEE Elect. Dev. Lett., vol. 21, p. 399, 2000.
[8] J. D. Bude, “Gate current by impact ionization feedback in sub-micron MOSFET technologies,” Proc. Symp. VLSI Technology, p. 101, 1995.
[9] J. D. Bude, M. R. Pinto and R. K. Smith, “Monte Carlo Simulation of the CHISEL Flash Memory Cell,” TED, vol. 47, p. 1873, 2000.
[10] C. Y. Lu, T. C. Lu and R. Liu, “NON-VOLATILE MEMORY TECHNOLOGY - TODAY AND TOMORROW,” IPFA, pp. 18-23, 2006.
[11] C. C. Yeh, et al., “Novel operation schemes to improve device reliability in a localized trapping storage SONOS-type flash memory,” IEDM, p. 169, 2003.
[12] Y. W. Chang, et al., “Modeling for the 2nd-Bit Effect of a Nitride-Based Trapping Storage Flash EEPROM Cell under Two-Bit Operation,” EDL, vol. 25, p. 95, 2004.
[13] H. T. Lue, et al., “Studies of the reverse read method and second-bit effect of 2 bit/cell nitride-trapping device by quasi-two-dimensional model,” IEEE Trans. Electron Devices, vol. 53, no. 1, pp. 119-125, 2006.
[14] G. Ingrosso, L. Selmi and E. Sangiorgi, “Monte Carlo Simulation of Program and Erase Charge Distributions in NROMTM Devices,” ESSDERC, p. 187, 2002.
[15] W. Stefanutti, et al., “Monte Carlo Simulation of Substrate Enhanced Electron Injection in Split-Gate Memory Cells,” TED, vol. 53, p. 89, 2006.
[16] D. Esseni and L. Selmi, “Experimental signature and physical mechanism of substrate enhanced gate current in MOS devices,” IEDM, 9. 579, 1998.
[17] L. Selmi and D. Esseni, “A better understanding of substrate enhanced gate current in VLSI MOSFETs and flash cells. II. Physical analysis,” TED, vol. 46, p. 376, 1999.
[18] MEDICI User Guide X-2005.10, Synopsys, Inc., 2005.
[19] H. Shichijo and K. Hess, “Band structure dependent transport and impact ionization in GaAs,” Phys. Rev., vol. 23, p. 4197, 1981.
[20] J. Y. Tang and K. Hess, “Impact ionization of electrons in silicon,” J. Appl. Phys., vol. 54, p. 5139, 1983.
[21] M. Fischetti, S. E. Laux, and E. Crabbe, “Understanding hot-electron transport in silicon devices: Is there a shortcut?” J. Appl. Phys., pp.1058–1087, 1995.
[22] C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Rev. Mod. Phys., vol. 55, p. 645, 1983.
[23] J. Tang and K. Hess, “Theory of Hot Electron Emission from Silicon into Silicon Dioxide,” J. Appl. Phys., vol. 54, pp. 5145-5151, 1983.
[24] L. Keldysh, “Concerning the theory of impact ionization semiconductors,” Sov. Phys. JEPT, vol. 21, p. 1135, 1965.
[25] C. Huang, et al., “Modeling hot-electron gate current in Si MOSFET's using a coupled drift-diffusion and Monte Carlo method,” TED, p. 2562, 1992.
[26] T. S. Liou, T. Wang and C. Y. Chang, “Analysis of high-field hole transport characteristics in Si1–xGex alloys with a bond orbital band structure,” J. Appl. Phys., vol. 79, p. 259, 1996.
[27] D. L. Kencke, et al., “The Origin of Secondary Electron Gate Current: A Multiple-stage Monte Carlo Study for Scaled, Low-power Flash Memory,” IEDM, p. 889, 1998.
[28] K. M. Chu and D. L. Pulfrey “An Improved Model for Metal-Insulator-Semiconductor Tunnel Junction,” TED, vol. 35, p. 1656, 1998.
[29] T. H. Ning, C. M. Osbum and H. N. Yu, “Emission probability of hot electrons from silicon into silicon dioxide,” J. Appl. Phys., vol. 48, p. 286, 1977.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top