跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳鎮宇
研究生(外文):Chen-Yu Wu
論文名稱:利用濺鍍法製備氧化鋁薄膜記憶體元件
論文名稱(外文):Memory Effect in Sputtered Aluminum Oxide Thin Films
指導教授:曾俊元
指導教授(外文):Tseung-Yuen Tseng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:79
中文關鍵詞:記憶體電阻式記憶體非揮發記憶體
外文關鍵詞:memoryRRAMnonvolatile memory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,對於下世代記憶體之研究,諸如鐵電記憶體(FeRAM)、磁阻式記憶體(MRAM)、相變化記憶體(PCM)與電阻式記憶體(RRAM)…等已十分廣泛。當中由於電阻式記憶體具有結構簡單、操作速度快、低耗能以及與現今半導體製程技術相容等優點,極可能成為下世代非揮發性記憶體之主流。然而,電阻式記憶體確也存在著下列缺點,像是高形成電壓(high forming voltage)、良率低(low yield)與記憶狀態在操作過程中會發生變異及寫入失敗等問題。
本論文以濺鍍法製備氧化鋁電阻轉換薄膜,搭配白金上下電極,在上電極與氧化鋁間置入一鈦金屬層。其結構為白金/鈦/氧化鋁/白金(Pt/Ti/Al2O3/Pt),厚度各為60奈米,20奈米,20~30奈米及80奈米。實驗中發現此電阻式記憶結構其記憶耐久度、高溫穩定性、非破壞性讀取與高溫操作下等特性均為十分優異,然而卻具有形成電壓過高(9V~14V)之缺點。製程中進一步利用鈦(Ti)金屬強烈吸氧之能力,於高溫爐管中進行不同溫度之熱處理,其分別為400度、500度、600度下歷時一小時,當中發現於600度下一小時之熱處理後,氧化鋁薄膜便不再需要形成過程(即形成電壓為零),且其依舊具有良好的電阻轉換特性。最後,由電學性質、穿透式電子顯微鏡之能量散射光譜儀(TEM-EDS)與二次離子質譜儀(SIMS)等分析相互佐證之下,進而提出以下機制:利用鈦之吸氧能力,在電阻轉換薄膜內創造許多氧空缺;當氧化鋁內某區域單位體積內之氧空缺濃度高於一程度時,就會造成類似崩潰現象,進而完成形成過程。此外,實驗中間接證明了氧化鋁之電阻轉換現象與內部氧缺陷有關,並為電阻轉態進一步地提出一個較明確之原理及機制。
In this thesis, next-generation nonvolatile memory will be introduced and from those we focus on resistance random access memory (RRAM) research. The RRAM has bistable resistive switching characteristic which can exhibit two states of different resistance for logic level. Therefore, RRAM can be next-generation memory by this characteristic. Owing to RRAM has excellent characteristics of high-speed operation, low-power, and high-density integration. In addition, its simple cell structure (metal-oxide-metal tri-layer), CMOS-friendly materials and low process temperature all are advantages for next-generation memory application.
RRAM is fabricated with aluminum oxide thin film deposited on Pt bottom electrode by RF magnetron sputter and chose Ti for top electrode. First, some material analyses of aluminum oxide thin films are proposed. The physical, electrical properties and reliability issue of RRAM are observed. From those analyses, conduction mechanism and switching mechanism could be driven. Finally, a solvent is proposed to improve the disadvantage of electrical characteristics for our device. It made the device potential for next-generation memory application
Figure Captions ……viii
Chapter 1 Introduction……………1
1-1 Introduction to Nonvolatile Memory……………1
1-1-1 Polymer Random Access Memory (PRAM)1
1-1-2 Magnetic Random Access Memory (MRAM)…………2
1-1-3 Ferroelectric Random Access Memory (FeRAM)………3
1-1-4 Phase Change Random Access Memory (PCRAM)………3
1-1-5 Resistance Random Access Memory (RRAM)……………4
1-2 Current Status of Resistance Random Access Memory……………5
1-2-1 Basic Structure and Deposition Method……5
1-2-2 Memory Cell and Array…6
1-2-3 Circuit Application………7
Chapter 2 Electronic Conduction Phenomena…………20
2-1 Classification of Electronic Conduction Phenomena 20
2-2 Possible Mechanisms of Plane Conduction Path…20
2-2-1 Space Charge Limit Current……………21
2-2-2 Schottky Emission…………22
2-3 Possible Mechanisms of Bulk Conduction Path……23
2-3-1 Tunneling or Hopping………24
Chapter 3 Experiment Details………29
3-1 Experiment Process Flow…………29
3-2 Radio Frequency Magnetron Sputter System………30
3-2-1 Vacuum System……………30
3-2-2 Pressure System……………30
3-2-3 Temperature Controlling System………30
3-2-4 Gas Flow Controlling System 31
3-2-5 Plasma Controlling System…31
3-2-6 Cooling System……………31
3-3 Sample Preparation…32
3-3-1 Preparation for Silicon Substrate and Bottom Electrode……32
3-3-2 Powder for Sputtering Targets 32
3-3-3 Top Electrode Thin Films Deposition………32
3-4 Measurements and Analyses………33
3-4-1 X-Ray Diffraction (XRD) 33
3-4-2 Scanning Electron Microscope (SEM)…33
3-4-3 Focus Ion Beam (FIB)………33
3-4-4 Transmission Electron Microscope (TEM), and Energy Dispersive Spectroscopy (EDS)……34
3-4-5 Atomic Force Microscope (AFM)…………34
3-4-6 Secondary Ion Mass Spectrometry (SIMS)…35
3-4-7 Current-Voltage Measurements……………35
Chapter 4 Experimental Results and Discussion………40
4-1 Material Analyses of Al2O3 Thin Films…………40
4-2 Electrical Analyses of Al2O3 Thin Films………41
4-2-1 Current-Voltage Characteristics………… 41
4-2-2 Reliability Characteristics…43
4-2-3 Top Electrode Effects……44
4-2-4 Carrier Conduction and Resistive Switching Mechanisms…45
4-3 Analyses of Modified Device Structure for Al2O3 Thin Films……47
4-3-1 Current-Voltage Characteristics……………48
4-3-2 Related Physical Characteristics………49
4-4 Summary ………51
Chapter 5 Conclusions ………74
References……………76
[1] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo , I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, Appl. Phys. Lett. 85, 5655, (2004)
[2] S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, and B. H. Park, Appl. Phys. Lett. 86, 093509 (2005)
[3] S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B.-H Park, Y. S. Kim, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, J. S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon, S. H. Hong, and B. H. Park, Appl. Phys. Lett. 87, 263507 (2005)
[4] D. C. Kim ,S. Seo, S. E. Ahn, D S. Suh, M. J. Lee, B.-H. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon, and B. I. Ryu, Appl. Phys. Lett 88, 202102 (2006)
[5] J. W. Parka, J. W. Park, K. Jung, M. K. Yang, and J. K. Lee, J. Vac. Sci. 24, 2205 (2006)
[6] Y. H. You, B. S. So, J. H. Hwang, W. Cho, S. S. Lee, T. M. Chung, C. G. Kim, and K. S. An, Appl. Phys. Lett. 89, 222105 (2006)
[7] R. Q. Wu, G. W. Peng, L. Liu, Y. P. Feng, Appl. Phys. Lett. 89, 082504 (2006)
[8] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, Appl. Phys. Lett. 89, 103509 (2006)
[9] D. C. Kim, M. J. Lee, S. E. Ahn, S. Seo, J. C. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon, and B. I. Ryu, Appl. Phys. Lett. 88, 232106 (2006)
[10] J. W. Park, J. W. Park, D. Y. Kim and J. K. Lee, J. Vac. Sci. 23, 1309, (2005)
[11] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, Appl. Phys. Lett. 86, 262907 (2005)
[12] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, J. Appl. Phys. 98, 033715 (2005)
[13] M. Fujimoto, H. Koyama, Y. Hosoi, K. Ishihara and S. Kobayashi, Jpn. J. Appl. Phys., Vol. 45, No. 11 (2006)
76
[14] D. S. Jeong, H. Schroeder, and R. Waser, Appl. Phys. Lett. 89, 082909 (2006)
[15] M. Fujimoto, and H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Awaya, Appl. Phys. Lett. 89, 223509 (2006)
[16] H. D. Young, K. W. Jeong, C. O. Kim and J. P. Hong, J, Kore Phys , Vol. 48, No.6, (2006)
[17] M. Knobel, P. Allia, C. Gómez-Polo, H. Chiriac, and M. Vázquez, J. Phys. D 28, 2398 (1995)
[18] B. J. Choi, S. Choi, K. M. Kim, Y. C. Shin, C. S. Hwang, S. Y. Hwang, S. S. Cho, S. Park, and S. K. Hong, Appl. Phys. Lett. 89, 012906 (2006)
[19] Y. Jin, H. Shinojima and M. Shimada, SSDM ,p566-567(2006)
[20] R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan, and Hyunsang Hwan, Appl. Phys .Lett . Vol. 90, 042107(2007)
[21] S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B. H. Park, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, Y. S. Joungand, I. K. Yoo, Jpn. J. Appl. Phys., Vol. 44, No. 11 (2005)
[22] S. H. Kim, I. S. Byun, I. R. Hwang, J.-S. Kim, J. S. Choi, S.-H. Kim, S. H. Jeon, S. H. Hong, J. H. Lee and B. H. Park, J. Korean Phys. Soc.47, (2005)
[23] D. Lee, H. Choi, H. Sim, D. Choi, Hyunsang Hwang, Myoung-Jae Lee, Sun-Ae Seo, and I. K. Yoo, IEEE Elec. Dev. Lett., Vol. 26, NO. 9, (2005)
[24] A.K. Jonsson, G.A. Niklasson and M. Veszelei, Thin Solid Films 402, p 242–247, (2002)
[25] H. Sim, D. Choi, D. Lee, S. Seo, M. J. Lee, I. K. Yoo, and H. Hwang, IEEE Elec. Dev. Lett., VOL. 26, NO. 5, MAY (2005)
[26] H. Sim, D. Choi, D. Lee, M. Hasan, C. B. Samantaray and H. Hwang, Microelectronic Engineering P260–263, (2005)
[27] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, Appl. Phys.Lett. Vol. 89, 103509 (2006)
[28] S. H. Shin, T. Halpern, and P. M. Raccah, J. Appl. Phys., Vol. 48, No. 7 (1997)
[29] G. W. Pabst, L. W. Martin, Y. H. Chu, and R. Ramesh, Appl. Phys. Lett. Vol. 90, 072902(2007)
77
[30] A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, IEDM Tech. Dig. p.746-769, (2005)
[31] T. N Fang, S. Kaza, S. Haddad, A. Chen, Y. C. Wu, Z. Lan, S. Avanzino, D. Liao, C. Gopalan, S. Choi, S. Mahdavi, M. Buynoski, Y. Lin, C. Marrian, C. Bill, M. VanBuskirk and M. Taguchi, IEDM Tech. Dig., (2006)
[32] C. Y. Lin, C. Y. Wu, C. Y. Wu, T. C. Lee, F. L. Yang, C. Hu, and T. Y. Tseng, IEEE Elec. Dev. Lett., VOL. 28, NO. 5, MAY (2007)
[33] S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, and R. B. Beyers, J. Appl. Phys., Vol. 85, No. 8, 15 April (1999)
[34] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. Vol. 77(1), p.139, (2000).
[35] I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U-In Chung, and J.T. Moon, IEDM Tech. Dig. p.587, (2004)
[36] Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Appl.Phys. Lett. 77, 139 (2000)
[37] D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, Appl. Phys. Lett. 88, 082904 (2006)
[38] C. Papagianni, Y. B. Nian, Y. Q. Wang, N. J. Wu, and A. Ignatiev, Non-Volatile Memory Technology Symposium, 15–17 Nov. p. 125. (2004)
[39] C. Y. Liu , C. C. Chuang , J. S. Chen , A. Wang , W. Y. Jang , J. C. Young , K. Yi Chiu , T. Y. Tseng, Thin Solid Films 494 p.287– 290, (2006)
[40] M. Kawasaki, A. Sawa and Y. Tokura, SSDM, pp286-287 (2006)
[41] H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E.H. Lee, W. Kim, Y. Park, I. K. Yoo and H. Hwang, IEDM Tech. Dig.p.758-761, (2005)
[42] Q. Ling , Y. Song , S. J. Ding , C. Zhu , D. S. H. Chan , D. L. Kwong , E. T. Kang , and K. G. Neoh, Advanced Materials. Vol. 17, no. 4, pp. 455-459. 23 Feb. (2005)
[43] M. Baibich, J. Broto, A. Fert, F. Nguyen Van Dau, F. Petro, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61. 2472. (1988)
[44] W.P. Pratt Jr., S.F. Lee, J.M. Slaughter, R. Lolee, P.A. Schroeder, and J. Bass, Phys. Rev. Lett. 66 (1991)
78
[45] M. Dax, Semicond. Int. 20 (10) (1997)
[46] I. G. Baek, D. C. Kim, M. J. Lee, H.-J. Kim, M. S. Lee, J. E. Lee, S. E.Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U-In Chung, J. T. Moon and B. I. Ryu, IEDM Tech. Dig, p. 769, 2005.
[47] W. W. Zhuang et al., IEDM Tech. Dig. pp. 193-196. 2002
[48] A. K. Sharma “Semiconductor Memories Technology, Testing, and Reliability” p14-15
[49] A. Pirovano, A. L. Lacaita, D. Merlani, A. Benvenuti, F. Pellizzer, and R. Bez, IEDM Tech. Dig, (2002)
[50] K. M. Kim, B. J. Choi, B. W. Koo, D. S. Jeong, and C. S. Hwang, Electrochemical and Solid-State Letters, 9(12) G343-G346 (2006)
[51] M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R.J. Luyken, W. Ro¨sner, M. Grieb, L. Risch, Solid-State Electronics 49, p716–720, (2004)
[52] T. W. Hickmott, J. Appl. Phys 100, 083712 (2006)
[53] K. M. Kim, B. J. Choi, B. W. Koo, S. CHoi, D. S. Jeong, and C. S. Hwang, Electrochem. Solid-State Lett., 9, G343 (2006)
[54] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. Vol. 85, No. 18, 1 November (2004)
[55] J. H. Hsu, H. W. Lai, H. N. Lin, C. C. Chuang, and J. H. Huang, J. Vac, Sci. Technology. B 21, 2599 (2003)
[56] Y. Ogimoto, Y. Tamai, M. Kawasaki and Y. Tokura. Appl. Phys. Lett. 90, 143515 (2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊