跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉文彥
研究生(外文):Wen-Yen Liu
論文名稱:低功率三態內容可定址式記憶體陣列與電路設計
論文名稱(外文):Low Power Ternary Content Addressable Memory Array and Circuit Design
指導教授:黃威黃威引用關係
指導教授(外文):Wei Hwang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:110
中文關鍵詞:低功率記憶體
外文關鍵詞:low powerTCAMmemorypower gating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用多模式資料保存電源阻斷技術與超級阻斷電源阻斷技術的低功率技術,提出了一個新穎的高速低功率抗雜訊的三元內容可定址記憶體。利用這兩項低功率技術,記憶體陣列之漏電流將慘遭大幅削減。在搜尋模式下同時應用超級阻斷電源阻斷技術可同時明顯地降低搜尋功率。利用柏克萊預測模型,在65nm下,一個高速低功率256行×144位元之三態內容可定址式記憶體亦被提出,它可以達到超過50%的漏電流削減,以及9%的搜尋功率削減,並達到0.047 fJ/bit/search的能源表現以及0.23ns之搜尋時間。利用TSMC 0.13μm CMOS 技術來實現電路設計與佈局,顯示出所提出的架構對原本的記憶體陣列增加了19%的面積。
A new high speed, low-power and noise-tolerant ternary content-addressable memories (TCAMs) using multi-mode data retention power gating technique and super cut-off power-gating technique are proposed in this thesis. These two techniques significantly reduce cell leakage current by taking the advantage of input don’t care patterns of IPv6 addressing lookup application. Furthermore, search power is also reduced by applying super cut-off power gating technique under search operation. butterfly match-line scheme reduces switching activity also. A 256-word x 144-bit low-power ternary CAM is also proposed. Based on 65nm Berkeley Predictive Technology Model, simulation results shows that 0.23ns search time and 0.047fJ/bit/search energy metric is achieved. Layout is implemented in TSMC 0.13μm CMOS technology, which indicates a 19% area overhead.
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Organization 3
Chapter 2 An Overview of Content Addressable Memory 5
2.1 Conventional CAM Architecture 5
2.2 Conventional CAM Cell 6
2.2.1 Binary CAM Cell 6
2.2.2 Ternary CAM Cells 8
2.3 Match-line Structure 11
2.3.1 NOR-type Match-line 12
2.3.2 AND-type Match-line 12
2.4 Applications of CAM 13
2.4.1 Cache Memory 14
2.4.2 Translation Look-aside Buffer 15
2.4.3 Packet Forwarding Using CAM 16
2.4.4 ATM Switches 18
2.5 Low power Content-addressable Memory Designs 19
2.5.1 Method of reducing Match-line power consumption 19
2.5.1.1 Low-Swing Scheme 19
2.5.1.2 Current-Race Scheme 20
2.5.1.3 Selective-Precharge Scheme 21
2.5.1.4 Pipelining Scheme 22
2.5.1.5 Current-Saving Scheme 23
2.5.2 Method of reducing Search-line power consumption 24
2.5.2.1 Hierarchical Search-line Scheme 24
2.5.2.2 Charge-Recycling Search-line Driver 26
2.5.3 Power-Saving CAM architecture 27
2.5.4 Tree Style AND-type Match Lines 30
2.6 Method of Reducing Standby Power 33
2.6.1 Novel Storage Cells for TCAM 33
Chapter 3 Multi-Mode Power Gating Technique 36
3.1 Standby Power 36
3.2 Stacking Effect 40
3.2.1 Self-Reverse Biasing 40
3.2.2 Trade-off Between Delay and Leakage 41

3.3 Power Gating Structures with Concurrent Data Retention and Intermediate mode 42
3.4 Proposed Power Gating Structure 46
3.4.1 Multi-mode Data Retention Power Gating Technique 46
3.4.2 Noise Margin Analysis 47
3.4.3 Simulation Result and Comparisons 48
3.5 Summary 49
Chapter 4 Low Power Schemes for Energy-Efficient TCAM Design 51
4.1 IPv6 Addressing Architecture 52
4.1.1 Unspecified Unicast Addresses 53
4.1.2 Loopback Unicast Addresses 53
4.1.3 Global Unicast Addresses 53
4.1.4 Local-Use IPv6 Unicast Addresses 54
4.2 IP Address Lookup 54
4.3 IPv6 Prefix Length Distribution in The Router 57
4.4 Energy Efficient Ternary Content Addressable Memory 58
4.4.1 Butterfly Match-Line Scheme 59
4.4.2 XOR-Based Conditional Keeper 60
4.4.3 Don’t Care Based Power Gating Match-line Scheme 62
4.4.4 Don’t Care Based Hierarchy Search-Line Scheme 63
4.5 Architecture 64
4.5.1 Match-line Scheme 66
4.5.1.1 Butterfly AND-type Match-line Scheme for IPv6 66
4.5.1.2 Applying Don’t-care Based Power-Gating Technique 67
4.5.2 Ternary CAM Cell 68
4.5.3 Don’t-care Based Hierarchical Search-line Scheme for IPv6 70
Chapter 5 Super Cut-off Power Gating TCAM Design with Leakage Current Reduction 71
5.1 Power Sources in Digital CMOS Circuits 72
5.1.1 Dynamic Power 72
5.1.2 Short-Circuit Power 72
5.1.3 Leakage Power 72
5.1.4 Low-Power CAM Design 73
5.2 MOSFET Structure Capacitances 73
5.2.1 Gate Capacitances 73
5.2.1.1 Overlap Capacitances 74
5.2.1.2 Gate-to-Channel Capacitances 75
5.2.2 Junction Capacitances 76
5.2.2.1 Bottom-Plate Junction Capacitances 76
5.2.2.2 Side-Wall Junction Capacitances 77
5.3 Super Cut-off Power Gating TCAM Structure 77
5.3.1 Introduction to Super Cut-off Technique 78
5.3.1.1 Concept of Super Cut-off Technique 78
5.3.1.2 Zigzag Super Cut-off Technique 79
5.3.2 Proposed Super Cut-off Power Gating Technique 82
5.3.2.1 Architecture 82
5.3.2.2 Implementation of Control Circuits and Voltage Generator 83
5.3.3 Simulation Result and Analysis 84
5.4 Proposed Low Power Ternary Content-Addressable Memory 87
5.4.1 Multi-mode Data Retention Power Gating Technique 87
5.4.2 Super Cut-off Power Gating Technique 89
5.4.3 The Overall Architecture 90
5.5 Simulation Result and Comparisons 90
5.6 Layout and the Post-Simulation 93
5.7 Summary 95
Chapter 6 Conclusions 97
6.1 Conclusions 97
Bibliography 99
[1]
M. Meribout, T. Ogura, and M. Nakanishi, “On using the CAM concept for parametric curve extraction,” IEEE Trans Image Process., vol. 9, no.12, pp. 2126–2130, Dec. 2000.
[2]
M. Nakanishi and T. Ogura, “Real-time CAM-based Hough transform and its performance evaluation,” Machine Vision Appl., vol. 12, no. 2, pp. 59–68, Aug. 2000.
[3]
E. Komoto, T. Homma, and T. Nakamura, “A high-speed and compactsize JPEG Huffman decoder using CAM,” in Symp. VLSI Circuits Dig. Tech. Papers, 1993, pp. 37–38.
[4]
L.-Y. Liu, J.-F.Wang, R.-J.Wang, and J.-Y. Lee, “CAM-based VLSI architectures for dynamic Huffman coding,” IEEE Trans. Consumer Electron., vol. 40, no. 3, pp. 282–289, Aug. 1994.
[5]
B. W. Wei, R. Tarver, J.-S. Kim, and K. Ng, “A single chip Lempel-Ziv data compressor,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 3, 1993, pp. 1953–1955.
[6]
R.-Y. Yang and C.-Y. Lee, “High-throughput data compressor designs using content addressable memory,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 4, 1994, pp. 147–150.
[7]
C.-Y. Lee and R.-Y. Yang, “High-throughput data compressor designs using content addressable memory,” IEE Proc.—Circuits, Devices and Syst., vol. 142, no. 1, pp. 69–73, Feb. 1995.
[8]
D. J. Craft, “A fast hardware data compression algorithm and some algorithmic extansions,” IBM J. Res. Devel., vol. 42, no. 6, pp. 733–745, Nov. 1998.
[9]
S. Panchanathan and M. Goldberg, “A content-addressable memory architecture for image coding using vector quantization,” IEEE Trans. Signal Process., vol. 39, no. 9, pp. 2066–2078, Sep. 1991.
[10]
T. Kohonen, Content-Addressable Memories, 2nd ed. New York: Springer-Verlag, 1987.
[11]
L. Chisvin and R. J. Duckworth, “Content-addressable and associative memory: alternatives to the ubiquitous RAM,” IEEE Computer, vol. 22, no. 7, pp. 51–64, Jul. 1989.
[12]
K. E. Grosspietsch, “Associative processors and memories: a survey,” IEEE Micro, vol. 12, no. 3, pp. 12–19, Jun. 1992.
[13]
I. N. Robinson, “Pattern-addressable memory,” IEEE Micro, vol. 12, no. 3, pp. 20–30, Jun. 1992.
[14]
S. Stas, “Associative processing with CAMs,” Northcon/93 Conf. Record, 1993, pp. 161–167.
[15]
S. Deering, and R. Hinden, “RFC: 1883 Internet Protocol Version 6 (IPv6) Specification,” Internet Engineering Task Force. (IETF), December 1995.
[16]
R. Hinden, and S. Deering, “RFC: 3513 Internet Protocol Version 6 (IPv6) Addressing Architecture,” Internet Engineering Task Force. (IETF), April 2003.
[17]
C.H. Hua, Wei Hwang, and C.K. Chen, “Noise-Tolerant XOR-Based Conditional Keeper for High Fan-in Dynamic Circuits,” IEEE International Symposium on Circuits and Systems, Kobe, Japan, 2005.
[18]
J.R. Yuan, C. Svensson, and P. Larsson, “New Domino Logic Precharged by Clock and Data,” Electronics Letters, Vol. 29, No. 25, pp. 2188-2189, Dec. 1993.
[19]
F. Shafai, K.J. Schultz, G.F.R. Gibson, A.G. Bluschke, D.E. Somppi, “Fully Parallel 30-MHz, 2.5-Mb CAM,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 11, pp. 1690-1696, Nov. 1998.
[20]
P.F. Lin and J.B. Kuo, “1-V 128-kb Four-Way Set-Associative CMOS Cache Memory Using Wordline-Oriented Tag-Compare (WLOTC) Structure with the Content Addressable-Memory (CAM) 10-transistor Tag Cell,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 4, pp.666-675, April 2001.
[21]
H. Miyatake and M. Tanaka and Y. Mori, “A Design for High-Speed Low-Power CMOS Fully Parallel Content-Addressable Memory Macros,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 6, pp.956-968, June 2001.
[22]
I. Arsovski and A. Sheikholeslami, “A Mismatch-Dependent Power Allocation Technique for Match-Line Sensing in Content-Addressable Memories,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 11, Nov. 2003.
[23]
I. Arsovski, T. Chandler and A. Sheikholeslami, “A Ternary Content-Addressable Memory (TCAM) Based on 4T Static Storage and Including a Current-Race Sensing Scheme,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 1, pp.155-158, Jan. 2003.
[24]
A. Roth, D. Foss, R. McKenzie and D. Perry, “Advanced Ternary CAM Circuits on 0.13μm Logic Process Technology,” Proceedings of the IEEE 2004 Custom Integrated Circuits Conference, pp. 465-468, Oct. 2004.
[25]
G. Kasai, Y. Takarabe, K. Furumi and M. Yoneda, “200MHz/200MSPS 3.2W at 1.5V Vdd, 9.4Mbits ternary CAM with New Charge Injection Match Detect Circuits and Bank Selection Scheme,” Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, pp. 387-390, Sept. 2003.
[26]
H. Noda, K. Inoue, H.J. Mattausch, T. Koide, K. Arimoto, “A Cost-Efficient Dynamic Ternary CAM in 130 nm CMOS Technology with Planar Complementary Capacitors and TSR Architecture,” Symposium on VLSI Circuits Digest of Technical Papers. pp.83-84, June 2003.
[27]
V. Lines, A. Ahmed, P. Ma, S. Ma, R. McKenzie, H.S. Kim and C. Mar, “66 MHz 2.3 M Ternary Dynamic Content Addressable Memory,” Records of the 2000 IEEE International Workshop on Memory Technology Design and Testing, pp.101-105, Aug. 2000.
[28]
J.G. Delgado-Frias, A. Yu and J. Nyathi, “A Dynamic Content Addressable Memory Using a 4-transistor Cell,” Third International Workshop on Design of Mixed-Mode Integrated Circuits and Applications, pp.110-113, July 1999.
[29]
H. Noda, K. Inoue, M. Kuroiwa, F. Igaue, K. Yamamoto, H.J. Mattausch, T. Koide, A. Amo, A. Hachisuka, S. Soeda, I. Hayashi, F. Morishita, K. Dosaka, K. Arimoto, K. Fujishima, K. Anami, T. Yoshihara, “A Cost-Efficient High-Performance Dynamic TCAM with Pipelined Hierarchical Searching and Shift Redundancy Architecture,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 1, pp. 245-253, Jan. 2005.
[30]
H. Miyatake and M. Tanaka and Y. Mori, “A Design for High-Speed Low-Power CMOS Fully Parallel Content-Addressable Memory Macros,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 6, pp.956-968, June 2001.
[31]
T.-B. Pei and C. Zukowski, “VLSI implementation of routing tables: tries and CAMs,” Proc. IEEE INFOCOM, vol. 2, 1991, pp. 515–524.
[32]
, “Putting routing tables in silicon,” IEEE Network Mag., vol. 6, no. 1, pp. 42–50, Jan. 1992.
[33]
A. J. McAuley and P. Francis, “Fast routing table lookup using CAMs,” Proc. IEEE INFOCOM, vol. 3, 1993, pp. 1282–1391.
[34]
N.-F. Huang, W.-E. Chen, J.-Y. Luo, and J.-M. Chen, “Design of multi-field IPv6 packet classifiers using ternary CAMs,” Proc. IEEE GLOBECOM, vol. 3, 2001, pp. 1877–1881.
[35]
G. Qin, S. Ata, I. Oka, and C. Fujiwara, “Effective bit selection methods for improving performance of packet classifications on IP routers,” Proc. IEEE GLOBECOM, vol. 2, 2002, pp. 2350–2354.
[36]
H. J. Chao, “Next generation routers,” Proc. IEEE, vol. 90, no. 9, pp. 1518–1558, Sep. 2002.
[37]
D. A. Patterson and J. L. Hennessy, “Computer Organization and Design,” Morgan Kaufmann, 2nd edition.
[38]
J. L. Hennessy and D. A. Patterson, “Computer Architecture,” Morgan Kaufmann, 3rd edition.
[39]
R. Panigrahy and S. Sharma, “Sorting and searching using ternary CAMs,” in Proc. Symp. High Performance Interconnects, 2002, pp. 101–106.
[40]
, “Sorting and searching using ternary CAMs,” IEEE Micro, vol. 23, no. 1, pp. 44–53, Jan.–Feb. 2003.
[41]
Http://www.commsdesign.com/main/1999/11/9911feat3.htm:Using Content Addressable Memory for Networking Applications
[42]
Http://www.eecg.toronto.edu/~pagiamt/: Content-Addressable Memory (CAM) Primer.
[43]
N. Mohan and M. Sachdev, “Low Power Dual Matchline Ternary Content Addressable Memory,” Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS '04), Vol. 2, pp.633-636, May 2004.
[44]
C.A. Zukowski and S.Y. Wang, “Use of Selective Precharge for Low-Power on the Match Lines of Content-Addressable Memories,” Proceedings of 1997 International Workshop on Memory Technology, Design and Testing, pp. 64-68, Aug. 1997.
[45]
K. Pagiamtzis and A. Sheikholeslami, “Pipelined Match-lines and Hierarchical Search-Lines for Low-Power Content-Addressable Memories,” Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, pp. 383-386, Sept. 2003.
[46]
N. Mohan and M. Sachdev, “A Static Power Reduction Technique for Ternary Content Addressable Memories,” Canadian Conference on Electrical and Computer Engineering, Vol.2, pp.711-714, May 2004.
[47]
M. M. Khellah and M. Elmasry, “Use of charge sharing to reduce energy consumption in wide fan-in gates,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 2, 1998, pp. 9–12.
[48]
I. Arsovski, T. Chandler, and A. Sheikholeslami, “A ternary contentaddressable memory (TCAM) based on 4T static storage and including a current-race sensing scheme,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 155–158, Jan. 2003.
[49]
C. A. Zukowski and S.-Y. Wang, “Use of selective precharge for lowpower content-addressable memories,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 3, 1997, pp. 1788–1791.
[50]
I. Y.-L. Hsiao, D.-H. Wang, and C.-W. Jen, “Power modeling and low-power design of content addressable memories,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 4, 2001, pp. 926–929.
[51]
A. Efthymiou and J. D. Garside, “An adaptive serial-parallel CAM architecture for low-power cache blocks,” in Proc. IEEE Int. Symp. Low Power Electronics and Design (ISLPED), 2002, pp. 136–141.
[52]
, “A CAM with mixed serial-parallel comparison for use in low energy caches,” IEEE Trans. VLSI Syst., vol. 12, no. 3, pp. 325–329, Mar. 2004.
[53]
N. Mohan and M. Sachdev, “Low power dual matchline content addressable memory,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 2, 2004, pp. 633–636.
[54]
K.-H. Cheng, C.-H.Wei, and S.-Y. Jiang, “Static divided word matchline line for low-power content addressable memory design,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 2, 2004, pp. 629–632.
[55]
K. Pagiamtzis and A. Sheikholeslami, “Pipelined match-lines and hierarchical search-lines for low-power content-addressable memories,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2003, pp. 383–386.
[56]
, “A low-power content-addressable memory (CAM) using pipelined hierarchical search scheme,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1512–1519, Sep. 2004.
[57]
J. M. Hyjazie and C. Wang, “An approach for improving the speed of content addressable memories,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 5, 2003, pp. 177–180.
[58]
I. Arsovski and A. Sheikholeslami, “A current-saving match-line sensing scheme for content-addressable memories,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2003, pp. 304–305.
[59]
I. Arsovski, A. Sheikholeslami, “A mismatch-dependent power allocation technique for matchline sensing in content-addressable memories,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1958–1966, Nov. 2003.
[60]
H. Noda, K. Inoue, M.Kuroiwa, A. Amo, A. Hachisuka, H. J. Mattausch, T. Koide, S. Soeda, K. Dosaka, and K. Arimoto, “A 143 MHz 1.1W4.5 Mb dynamic TCAM with hierarchical searching and shift redundancy architecture,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2004, pp. 208–209.
[61]
B. Gamache, Z. Pfeffer, and S. P. Khatri, “A fast ternary CAM design for IP networking applications,” Proceedings of The 12th International Conference on Computer Communications and Networks (ICCCN 2003), pp. 434-439, Oct. 2003.
[62]
S. Choi, K. Sohn, and H.J. Yoo, “A 0.7-fJ/bit/search 2.2-ns Search Yime Hybrid-Type TCAM Architecture,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 1, pp.254-260, Jan. 2005.
[63]
K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage Current Mechanism and Leakage Reduction Technique in Deep-Submicrometer CMOS Circuits,” Proceedings of the IEEE, vol. 91, No. 2, pp. 305-327, Feb. 2003.
[64]
Li Ding and P. Mazumder, “On Circuit Techniques to Improve Noise Immunity of CMOS Dynamic Logic,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 12, No. 9, pp. 910-925, Sept. 2004.
[65]
Li Ding and P. Mazumder, “On Circuit Techniques to Improve Noise Immunity of CMOS Dynamic Logic,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 12, No. 9, pp. 910-925, Sept. 2004.
[66]
Wei Hwang, R.V. Joshi, and W.H. Henkels, “A 500-MHz, 32-Word x 64-Bit, Eight-Port Self-Resetting CMOS Register File,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 1, pp. 56-67, Jan. 1999.
[67]
Wei Hwang, G.D. Gristede, Pia Sanda, S.Y. Wang, and D.F. Heidel, “Implementation of a Self-Resetting CMOS 64-Bit Parallel Adder with Enhanced Testability,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 8, pp. 1108-1117, Aug. 1999.
[68]
M.H. Anis, M.W. Allam, and M.I. Elmasry, “Energy-Efficient Noise-Tolerant Dynamic Styles for Scaled-Down CMOS and MTCMOS Technologies,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 10, No. 2, pp. 71-78, Apr. 2002.
[69]
M.W. Allam, M.H. Anis, and M.I. Elmasry, “High-Speed Dynamic Logic Styles for Scaled-Down CMOS and MTCMOS Technologies,” Proceedings of the 2000 International Symposium on Low Power Electronics and Design (ISLPED '00), pp. 155-160, 2000.
[70]
S.O. Jung; S.M. Yoo; K.W. Kim, and S.M. Kang, “Skew-Tolerant High-Speed (STHS) Domino Logic,” The 2001 IEEE International Symposium on Circuits and Systems (ISCAS 2001), Vol. 4, pp. 154-157, May 2001.
[71]
A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and S. Borkar, “A Conditional Keeper Technique for Sub-0.13um Wide Dynamic Gates,” 2001 Symposium on VLSI Circuits Digest of Technical Papers, pp. 29-30, 2001.
[72]
A. Alvandpour, R.K. Krishnamurthy, K. Soumyanath, and S.Y. Borkar, “A Sub-130-nm Conditional Keeper Technique,” IEEE Journal of Solid-State Circuits, Vol. 37, No. 5, pp. 633-638, May 2002.
[73]
A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and S. Borkar, “A Low-Leakage Dynamic Multi-Ported Register File in 0.13μm CMOS,” 2001 International Symposium on Low Power Electronics and Design, pp. 68-71, Aug. 2001.
[74]
C.M. Lee and E.W. Szeto, “Zipper CMOS,” IEEE Circuits Devices Magazine, vol. 2, pp. 10-17, May 1986.
[75]
J. Pretorius, A. Shubat, and C. Salama, “Charge Redistribution and Noise Margins in Domino CMOS Logic,” IEEE Transactions on Circuits and Systems, Vol. 33, No. 8, pp. 786-793, Aug 1986.
[76]
G.P. D’Souza, “Dynamic Logic Circuit with Reduced Charge Leakage,” U.S. Patent 5 483 181, Jan. 1996.
[77]
E.B. Schorn, “NMOS Charge-Sharing Prevention Device for Dynamic Logic Circuits,” U.S. Patent 5 838 169, Nov. 1998.
[78]
Lei Wang and N. R. Shanbhag, “Noise-Tolerant Dynamic Circuit Design,” Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS '99), Vol. 1, pp. 549-552, May-June 1999.
[79]
G. Balamurugan and N.R. Shanbhag, “Energy-Efficient Dynamic Circuit Design in the Presence of Crosstalk Noise,” Proceedings of 1999 International Symposium on Low Power Electronics and Design, pp. 24-29, 1999.
[80]
G. Balamurugan and N. R. Shanbhag, “A Noise-Tolerant Dynamic Circuit Design Technique,” Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (CICC), pp. 425-428, May 2000.
[81]
F. Murabayashi, T. Yamauchi, H. Yamada, T. Nishiyama, K. Shimamura, S. Tanaka, T. Hotta, T. Shimizu, and H. Sawamoto, “2.5 V CMOS Circuit Techniques for a 200 MHz Superscalar RISC Processor,” IEEE Journal of Solid-State Circuits, Vol. 31, No. 7, pp. 972-980, July 1996.
[82]
J.J. Covino, “Dynamic CMOS Circuits with Noise Immunity,” U.S. Patent 5 650 733, July 1997.
[83]
D.A. Evans, “Noise-Tolerant Dynamic Circuits,” U.S. Patent 5 793 228, Aug. 1998.
[84]
S. Bobba and I.N. Hajj, “Design of Dynamic Circuits with Enhanced Noise Tolerance,” Proceedings of 20th Annual IEEE International ASIC/SOC Conference, pp. 54-58, Sept. 1999.
[85]
C.H. Hua, Wei Hwang, and C.K. Chen, “Noise-Tolerant XOR-Based Conditional Keeper for High Fan-in Dynamic Circuits,” presented at IEEE International Symposium on Circuits and Systems, Kobe, Japan, 2005.
[86]
H. Mahmoodi-Meimand and K. Roy, “A leakage-Tolerant High Fan-In Dynamic Circuit Design Style,” Proceedings of the 2003 IEEE International SOC Conference, pp. 117-120, Sept. 2003.
[87]
A. Solomatnikov, D. Somasekhar, K. Roy, and C. K. Koh, “Skewed CMOS: Noise-Immune High-Performance Low-Power Static Circuit Family,” Proceedings of 2000 International Conference on Computer Design, pp. 241-246, Sept. 2000.
[88]
H. Mahmoodi-Meimand and K. Roy, “Diode-Footed Domino: a Leakage-Tolerant High Fan-In Dynamic Circuit Design Style,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 51, No. 3, pp. 495-503, March 2004.
[89]
J.S. Wang, H.Yu Li, C.C. Chen, and C.W. Yeh, “An AND-type Match-line Scheme for Energy-Efficient Content Addressable Memories,” presented at IEEE International Solid-State Circuits Conference, San Francisco, CA, 2005.
[90]
Jinn-Shyan Wang, Chao-Ching Wang, and Chingwei Yeh, “TCAM for IP-Address Lookup Using Tree-style AND-type Match Lines and Segmented Search Lines,” IEEE International Solid-State Circuits Conference, pp. 166-167, Feb. 2006
[91]
Stallings, Williams. 1996. IPv6: The New Internet Protocol [Document on-line]. Available from http://www.ieee.org/ comsoc/stallings.htm; Internet.

[92] Po-Tsang Huang, Shu-Wei Chang, Wen-Yen Liu, and Wei Hwang, “A 256x128 Energy-Efficient TCAM with Novel Low Power Schemes”, IEEE International Symposium on VLSI Design, Automation, and Test, 2007
[93] J. Zhang, Y. Ye, B. Liu, “A New Mismatch-Dependent Low Power Technique with Shadow Match-Line Voltage-Detecting Scheme for CAMs”, IEEE International Symposium on Low Power Electronics and Design, pp. 135-138, Oct, 2006
[94] Http://www-device.eecs.berkeley.edu: BSIM 100nm and 70nm predictive technology process files.
[95] International Technology Roadmap for Semiconductors 2001 edition, Semiconductor Industry Association, http://public.itrs.net
[96] C.H. Hus, “Low Power Multi-Port Register File Design for Digital Sognal Processor,” Master thesis, National Chiao-Tung University, June 2003.
[97] H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, and J. Rabaey, “SRAM Leakage Suppression by Minimizing Standby Supply Voltage,” Proceedings of 5th International Symposium on Quality Electronic Design, pp.55-60, 2004.
[98] T. Kawahara, M. Horiguchi, Y. Kawajiri, G. Kitsukawa, T. Kure, and M. Aoki, “Subthreshold Current Reduction for Decoded-Driver by Self-Reverse Biasing,” IEEE Journal of Solid-State Circuits, Vol. 28, No. 11, pp. 1136-1144, Nov. 1993.
[99] Z. Chen, M. Johnson, L. Wei, and K. Roy, “Estimation of Standby Leakage Power in CMOS Circuits Considering Accurate Modeling of Transistors Stacks,” International Symposium on Low Power Electronics and Design, pp. 239-244, 1998.
[100] B. H. Calhoun, F. A. Honore, and A. P. Chandrakasan, “A Leakage Reduction Methodology for Distributed MTCMOS,” IEEE Journal of Solid-State Circuits, vol. 39, issue 5, pp. 818-826, May 2004.
[101] M. Anis, S. Areibi, M. Elmasry, “Design and Optimization of Multithreshold CMOS (MTCMOS) Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, issue 10, pp. 1324-1342, Oct. 2003.
[102] Hulfang Qin, Yu Cao, D. Markovic, A. Vladimirescu, J. Rabaey, “SRAM leakage suppression by minimizing standby supply voltage,” International Symposium on Quality Electronics Design, pp. 55-60, Mar. 2004
[103] Chung-Hsien Hua, Tung-Shuan Cheng and Wei Hwang, "Distributed Data-Rentention Power Gating Techniques for Column and Row Co-controlled Embedded SRAM", International Workshop on Memory Technology, Design and Testing, 2005
[104] International Technology Roadmap for Semiconductors, 1999 update
[105] T. Sakurai, “Perspectives on power-aware electronics,” IEEE International Solid-State Circuits Conference, 2003. Page(s):26 - 29 vol.1
[106] H. Kawaguchi, K. Nose, T. Sakurai, “A super cut-off CMOS (SCCMOS) scheme for 0.5-V supply voltage with picoampere stand-by current,” IEEE Journal of Solid-State Circuits, Vol. 35, Issue 10, Oct. 2000 pp. 1498 - 1501
[107] N.M. Madani, B. Tavassoli, A. Behnam, A. Afzali-Kusha, “Study of super cut-off CMOS technique in presence of the gate leakage current,” The 16th International Conference on Microelectronics, 6-8 Dec. 2004 Page(s):24 - 27
[108] Kyeong-Sik, H. Kawaguchi, T. Sakurai, “Zigzag super cut-off CMOS (ZSCCMOS) block activation with self-adaptive voltage level controller: an alternative to clock-gating scheme in leakage dominant era,” IEEE International Solid-State Circuits Conference, 2003 Page(s):400 - 502 vol.1
[109] Kyeong-Sik Min, T. Sakurai, ”Zigzag super cut-off CMOS (ZSCCMOS) scheme with self-saturated virtual power lines for subthreshold-leakage -suppressed sub-1-V-VDDLSI's,” Proceedings of the 28th European Solid-State Circuits Conference, 24-26 Sept. 2002 Page(s):679 - 682
[110] Kyeong-Sik Min; Hun-Dae Choi, H-Y Choi, H. Kawaguchi, T. Sakurai, “Leakage-suppressed clock-gating circuit with Zigzag Super Cut-off CMOS (ZSCCMOS) for leakage-dominant sub-70-nm and sub-1-V-V/sub DD/ LSIs,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 14, Issue 4, April 2006 Page(s):430 - 435
[111] Y. Tsukikawa et al., “An Efficient Back-Bias Generator with Hybrid Pumping Circuit for 1.5-V DRAM’s”, IEEE Journal of Solid-State Circuits, Vol. 29, No. 4, pp. 534-538, April 1994
[112] P. Favrat, P. Deval and M. Declercq, “A High-Effiency CMOS Voltage Doubler”, IEEE Journal of Solid-State Circuits, Vol. 33, No. 3, pp. 410-416, Mar. 1998.
[113] T.C. Chen and R.B. Sheen, “A Power-Efficient Wide-Range Phase-Lock Loop”, IEEE Journal of Solid-State Circuits, Vol. 37, No. 1, pp. 51-62, Jan. 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊