跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 06:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭耿華
研究生(外文):Keng-Hua Kuo
論文名稱:雙抗諧振反射光波導分光元件之設計、研製與特性量測
論文名稱(外文):Design, Fabrication, and Characterization of Dual ARROW Power Splitters
指導教授:黃遠東黃遠東引用關係
指導教授(外文):Yang-Tung Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:72
中文關鍵詞:抗諧振反射光波導B型抗諧振反射光波導分光器定向耦合器
外文關鍵詞:ARROWARROW-Bpower splitterdirectional coupler
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究雙抗諧振反射光波導(dual ARROW)分光元件,包括其設計、元件製作與特性量測。由於抗諧振反射光波導具有較厚的入射導光區,因此可以有效地和單模光纖耦合;再者雙抗諧振反射光波導具有耦合長度與波導間距呈現週期性的特性,因此可依不同需求,設計出具有不同波導間距的元件。在此研究中,首先利用轉移矩陣法(TMM)和等效折射係數法(EIM)來分析及設計抗諧振反射光波導之結構,接著應用波束傳輸法(BPM)來模擬雙抗諧振反射光波導分光元件。藉由上述之分析方法及模擬結果,我們設計波導間距為3.2微米以及13.8微米兩種雙抗諧振反射光波導之分光元件,進而實作其元件並加以量測特性。量測結果如下 : 3.2微米雙抗諧振反射光波導分光元件分光波道間之不均勻度差平均值及標準差對TE模態為1.201 dB及0.321 dB,TM模態為1.369 dB及0.244 dB;13.8微米雙抗諧振反射光波導分光元件分光波道間之不均勻度差平均值及標準差對TE模態為1.262 dB及0.273 dB,TM模態為1.627 dB及0.229 dB。Ridge ARROW結構之TE模態的傳輸損耗為0.928~1.264 dB/cm,TM模態的傳輸損耗為3.899~4.131 dB/cm。最後探討量測誤差及建議改善方法。由製作之雙抗諧振反射光波導分光元件顯示其確實具有分光的能力。
In this thesis, dual ARROW power splitters are investigated, including device design, fabrication, and characterization. With thicker guiding region, ARROW could be coupled with single-mode fiber more efficiently. Furthermore, dual ARROW waveguides possess the significant feature that the relation between the coupling length and the separation width is periodic. Better performance is realized by designing dual ARROW power splitters with ARROW structure in the vertical direction. We begin with analyzing and designing ARROW structure with the transfer matrix method (TMM) and the effective index method (EIM). Then, the beam propagation method (BPM) is utilized to simulate dual ARROW power splitters. With above analytical methods and simulation results, we designed dual ARROW power splitters with two different separation widths which are 3.2 μm and 13.8μm. In addition, we fabricated these devices and measured the characteristics. The measurement results as follows: The average value of the imbalance and the standard deviation of the power splitter whose separation width is 3.2 μm are 1.201 dB and 0.321 dB for TE mode, 1.369 dB and 0.244 dB for TM mode. The average value of the imbalance and the standard deviation of the power splitter with the separation width of 13.8 μm are 1.262 dB and 0.273 dB for TE mode, 1.627 dB and 0.229 dB for TM mode. The propagation losses of the ridge waveguide for TE and TM modes are 0.928~1.264 dB/cm and 3.899~4.131 dB/cm. Experimental results are discussed and some suggestions are given. Measured results show that our dual ARROW power splitters have the ability to provide the characteristic of power balance.
1. Introduction 1
2. Analytic Theories and Methods 3
2.1 Introduction 3
2.2 Transfer Matrix Method 3
2.2.1 TE Modes 4
2.2.2 TM Modes 8
2.3 Beam Propagation Method 10
2.4 Effective Index Method 12
3. Characteristics and Design of Dual ARROW
Power Splitters 14
3.1 Characteristics of an ARROW Structure 14
3.2 Characteristics of an ARROW-B Structure 18
3.3 Design of a Slab ARROW Structure 19
3.4 Coupling-efficiency Analysis 25
3.5 Design of Dual ARROW Power Splitters 29
3.5.1 Simulation Results for Dual ARROW
Waveguides 30
3.5.2 Simulation Results for Dual ARROW
Power Splitters with S-bends 39
4. Fabrication Process of Dual ARROW Power Splitters 44
4.1 Deposition 44
4.2 Lithography 45
4.3 Etching Process and AEI 47
(after etching inspection)
5. Characterizations and Discussion 57
5.1 The Setup of Optical Measurement System 57
5.2 The Measurement Results of Dual ARROW
Power Splitters 59
5.3 Cut-back Method for Propagation Loss 61
5.4 Discussion 62
6. Conclusion 67
H. F. Taylor and A. Yariv, "Guided wave optics," Proc. IEEE, vol. 62, no. 8, pp. 1044--1060, Aug. 1974.
E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J., vol. 48, pp. 2071--2102, 1969.
D. Marcuse, "The coupling of degenerate modes in two parallel dielectric waveguides," Bell Syst. Tech. J., vol. 50, pp. 1791--1816, 1971.
A. Yariv, "Coupled mode theory for guided--wave optics," IEEE J. Quantum Electron., vol. QE-9, no. 9, pp. 919--933, Sep. 1973.
A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," IEEE J. Lightwave Technol., vol. LT-3, no. 5, pp. 1135--1146, Oct. 1985.
M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett., vol. 49, no. 1, pp. 13--15, Jan. 1986.
L. B. Soldano and E.C. M. Penning, "Optical multi-mode interference devices based on self-imaging: principles and applications," IEEE J. Lightwave Technol., vol. 13, no. 4, pp. 615--627, Apr. 1995.
M. Mann, U. Trutschel, C. Wachter, L. Leine, and F. Lederer, "Directional coupler based on an antiresonant reflecting optical waveguide," Opt. Lett., vol. 16, no. 11, pp. 805--807, June 1991.
T. Baba, Y. Kokubun, T. Sakaki, and K. Iga, "Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration," IEEE J. Lightwave Technol., vol. LT-6, no. 9, pp. 1440--1444, Sep. 1988.
S.-H. Hsu and Y.-T. Huang, "Design and analysis of Mach-Zehnder interferometer sensors based on dual strip antiresonant reflecting optical waveguide structures," Opt. Lett., vol. 30, no. 21, pp. 2897--2899, Nov. 2005.
T. Tamir (Ed.), Guided-wave optoelectronics, Springer-Verlag, 1990.
K. Okamoto, Fundamentals of Optical Waveguides, Academic Press, 2000.
R. M. Knox and P. P. Toulios, "Integrated circuits for millimeter through optical frequency region," in Proc. MRI Symp. Submillimeter Waves, J. Fox, Ed., Brooklyn: Ploytechnic Press, pp. 497--516, 1970.
W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in Fortran 77 : The Art of Scientific Computing, Chapter 19, Cambridge University Press, New York, 1996.
H. J. W. M. Hoekstra, G. J. M. Krijnen and P. V. Lambeck "On the accuracy of the finite difference method for applications in beam propagation techniques," Opt. Commun., vol. 94, pp. 506--507, 1992.
H. J. W. M. Hoekstra, G. J. M. Krijnen and P. V. Lambeck "New formulation of the beam propagation method based on the slowly varying envelop approximation," Opt. Commun., vol. 97, pp. 301--303, 1993.
G. R. Hadley, "Transparent boundary condition for beam propagation," Opt. Lett., vol. 16, no. 9, pp. 624--626, May 1991.
G. R. Hadley, "Multistep method for wide-angle beam propagation," Opt. Lett., vol. 17, no. 24, pp. 1743--1745, Dec. 1992.
E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J., vol. 48, no. 9, pp. 2071--2102, 1969.
K.S. Chiang, "Dual effective-index method for the analysis of rectangular waveguides," Appl. Opt., vol. 25, pp. 2169--2174, 1986.
W. P. Huang, A. Nathan, R. M. Shubair, and Y. L. Chow. "The modal characteristics of ARROW structures," IEEE J. of Lightwave Technol., vol. 10, no. 8, pp. 1015--1022, 1992.
J.-J. Deng, "Analysis and design of antiresonant reflecting optical waveguide devices with discontinuities," Ph. D. Dissertation, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., 2000.
T. Baba and Y. Kokubun, "New polarization-insensitive antiresonant reflecting optical waveguide (ARROW-B)," IEEE Photon. Technol. Lett., vol. 1, no 8, pp. 232--234, 1989.
Y.-H. Chen and Y.-T. Huang, "Coupling-efficiency analysis and control of dual antiresonant reflecting optical waveguides," IEEE J. Lightwave Technol., vol. 14, pp. 1507--1513, June 1996.
Y. Suematsu, and K. Kishino, "Coupling coefficient in strongly coupled dielectric waveguides," Radio Science, vol. 12, no. 4, pp. 587--592, July--Aug. 1977.
A. Ferreras, F. Rodiguez, E. Gomez-Salas, J. L. de Miguel, and F. Hernandez-Gil, "Useful formulas for multimode interference power splitter/combiner design," IEEE Photon. Technol. Lett., vol. 5, no. 10, pp. 1224--1227, Oct. 1993.
A. R. Forouhi and I. Bloomer, "Optical dispersion relations for amorphous semiconductors and amorphous dielectrics," Phys. Rev. B, vol. 34, no. 15, pp. 7018--7026, Nov. 1986.
A. R. Forouhi and I. Bloomer, "Optical dispersion relations of crystalline semiconductors and dielectrics," Phys. Rev. B, vol. 38, no. 3, pp. 1865--1874, July 1988.
H. Nishihara, M. Haruna, and T. Suhara, Optical integrated circuits. McGraw-Hill, 2001.
T. Baba and Y. Kokubun, "Scattering loss of antiresonant reflecting optical waveguides," IEEE J. Lightwave Technol., vol. 9, no. 5, pp. 500--597, 1991.
P. Singer, "Furnaces Evolving to Meet Diverse Thermal Processing Needs," Semiconductor International, p. 85, Mar. 1997.
SEMATECH, "Furnace Equipment Overview," module 3 in Furnace Processes and Related Topics, pp. 3--6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top