跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/04 08:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊佳璇
論文名稱:在中繼型態WiMAX網路系統中提升傳輸量並保證服務品質的排程法
論文名稱(外文):QoS Guaranteed Throughput Enhancement Scheduling in WiMAX Relay-Assisted Network
指導教授:張仲儒
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:55
中文關鍵詞:中繼站服務品質保證
外文關鍵詞:RELAYQOSWIMAX
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
為了要以較低的投資成本來擴大基地台(BS)的服務範圍,以及維持良好的訊號雜訊比,使用中繼站(RS; relay station)的技術逐漸成為重要的研究範疇。此外,在現今多媒體通訊的環境下,傳輸服務品質(QoS; Quality of Service)的保證是一個很重要的課題。因此,一個能夠有效使用系統資源,同時能保證QoS的無線資源排程演算法是必要的。
在本篇論文中,我們提出了一個在有中繼型態WiMAX網路系統中,提供下行鏈路服務品質保證及系統效能提升之QoS_GTE排程法演算法。QoS_GTE 由傳送時間基準(TT_based)路徑選擇演算法、服務排序基準(SO_based)資源分配演算法,以及同時傳送(TC; transmission concurrency)判別演算法所組成。TT_based路徑選擇演算法選擇傳送時間最短的路徑為傳輸路徑;SO_based資源分配演算法給予較高緊迫性的使用者較高的優先權,使不同層級的使用者可以滿足各自的QoS。在QoS 滿足的同時,又能提高系統的傳輸量。同時傳送判斷演算法則是使系統資源作有效的重複使用。由模擬結果得知,我們所提出的路徑選擇演算法確實比過去文獻中所提出的方法好,不僅系統傳輸量為最高,各層級使用者的服務品質也是最好的;資源分配演算法也在大部分的時候都能達到品質保證;同時傳送判別演算法亦可增加系統之服務量。同時,中繼站的擺放位置對系統的表現也有很大的影響,在我們設定的模擬情境中,中繼站的擺放位置以基地台服務半徑的四分之三為最佳。
Mandarin Abstract i
English Abstract ii
Acknowledgements iii
Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
Chapter 2 System Model 6
2.1 Environment 6
2.2 WiMAX Technology 7
2.3 Services 9
2.4 Channel Model 13
2.5 Available Data Rate 14
Chapter 3 QoS_GTE Scheduling Scheme 17
3.1 TT_based Path Selection Algorithm 18
3.2 SO_based Resource Allocation Algorithm 20
3.2.1 Definition of 21
3.2.2 Resource Allocation 24
3.3 TC Decision Algorithm 25
Chapter 4 Simulation Results and Discussions 30
4.1 Manhattan Street Like Environment 31
4.2 Traffic Models and QoS Requirements 33
4.3 Performance Evaluation 35
4.3.1 Performance Evaluation on Relay schemes 36
4.3.2 Station Performance Evaluation on Location of Relay 45
Chapter 5 Conclusions 51
Bibliography 53
Vita 55
[1] B. H. Walke, R. Pabst, D. Schultz, P. Herhold, H. Yanikomeroglu, S. Mukherjee, H. Viswanathan, M. Lott, W. Zirwas, M. Dohler, H. Aghvami, D. Falconer, and G. P. Fettweis, “Relay-based Deployment Concept for Wireless and Mobile Broadband Radio,” IEEE Commun. Mag., vol. 42, no.9, pp. 80-89, 2004.
[2] H. Wu, Ch. Qiao, S. De and O. Tonguz, “Integrated Cellular and Ad Hoc Relaying System: iCAR,” IEEE Journal on Selected Area in Communications, vol. 19, no. 10, pp. 2105-2115, October 2001.
[3] J. Cho and Z. J. Hass, “On the Throughput Enhancement of the downstream Chnnel in Cellular Radio Networks Through Multihop Relaying,” IEEE Journal on Selected Areas in Communication. Vol. 22, no. 7, pp 1206-1219, September. 2004.
[4] T. Hui, G. Xuelin, and Z. Ping, “The Impact of Relaying Strategies on the Performance in Cellular System,” Proc. ISCIT, pp. 1357-1360, 2005.
[5] V. Sreng, H. Yanikomeroglu, and D. D. Falconer, “Relayer Selection Strategies in Cellular Networks with Peer-to-Peer Relaying,” Proc. IEEE VTC Fall pp. 1949-1953, 2003.J. Bae, R. Berry and M. L. Honig, “Power Allocation, Rate, and Coverage for Relay-Assisted Downlink Data Transmission,” Proc. IEEE ICC June, 2006.
[6] J. Bae, R. Berry and M. L. Honig, “Power Allocation, Rate, and Coverage for Relay-Assisted Downlink Data Transmission,” Proc. IEEE ICC June, 2006.
[7] H. Viswanathan and S. Mukherjee, “Performance of Cellular Network with Relays and Centralized Scheduling,” IEEE Transactions on Wireless Communications. vol. 4, no. 5, pp 2318-2328, September 2005.
[8] H. Yu, S. Ganguly, R. Izmailov and Z. J. Hass, “Interference-Aware IEEE802.16 WIMAX Mesh Networks,” Proc. VTC 2005 Spring, pp 3102-3106, 2005.
[9] L. Fu, Z. Cao, and P. Fan, “Spatial Reuse in IEEE 802.16 Based Wireless Mesh Networks,” Proc. ISCIT, pp 1311-1314, 2005.
[10] N. Challa, H. Cam, “Cost-Aware Downlink Scheduling of Shared Channel for Cellular Network with Relays,” Performance, Computing, and Communication, 2004 IEEE International Conference, pp 793-798, 2004.
[11] J. Jang and K. B. Lee, “Transmit Power Adaptive for Multiuser OFDM Systems,” IEEE J. Select. Areas Commu., vol. 21, pp 171-178, February 2003.
[12] W. Rhee and J. M. Cioffi, “Increase in Capacity of Multiuser OFDM System Using Dynamic Subchannel Allocation,” in Proc. IEEE VTC, Tokyo, Japan, May 2000, pp 1085-1089.
[13] X. Zhang, E. Zhou, R. Zhu, S. Liu, and W. Wang, ”Adaptive Multiuser Radio Resource Allocation for OFDMA System,” IEEE Globecom 2005, pp 3846-3850.
[14] Universal Mobile Telecommunication System, Selection procedures for the choice of radio transmission technology of the UMTS, UMTS Std. 30.03, 1998.
[15] 3GPP TR 25.892, “Feasibility study for OFDM for UTRAN enhancement,” 3rd Generation Partnership Project, Tech. Rep., 2004-06.
[16] IST-2003-507581 winner d5.4 v.1. on line available – http://www.ist-winner.org/.
[17] A. J. Goldsmith and S. G. Chua, “Variable-Rate Variable-Power MQAM for Fading Channels,” IEEE Transaction on Communication, vol. 45, no. 10, Oct. 1997, pp1218-1230.
[18] H. Yaghoobi, “Scalable OFDMA physical layer in IEEE 802.16 WirelessMAN,” Intel Technology Journal, vol. 8, issue 3, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊