跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/28 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志明
研究生(外文):Chih-Ming Chen
論文名稱:複合材料積層板及樑結構之彈性常數識別
論文名稱(外文):Elastic Constants Identification of Laminated Composite Plate and Beam Structures
指導教授:金大仁金大仁引用關係
指導教授(外文):Tai-Yan Kam
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:213
中文關鍵詞:最佳化彈性常數識別複合材料
外文關鍵詞:OptimizationElastic constantsIdentificationComposite
相關次數:
  • 被引用被引用:4
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:1
本文提出結合複合材料力學及數值最佳化之方法來識別已成形加工之複合材料積層板及樑結構的彈性常數值。考慮複合材料積層板結構,在承受主結構方向即x-y方向之軸向拉力時,或複合材料積層樑結構做三點彎曲試驗,應變與複合材料積層結構之各勁度間的關係,以及利用所產生之應變來作為建立複合材料積層板及樑結構之材料彈性常數識別的數值最佳化目標函數,進而識別出複合材料積層板結構之材料彈性常數E1、E2、剪力模數G12及蒲松比��12。其方法是先量測出複合材料積層板結構受軸向拉力後之軸向應變、橫向應變及剪應變值,或複合材料積層樑結構受力矩後之軸向應變、橫向應變及剪應變值,利用這些應變值建立成為數值最佳化之目標函數,以複合材料積層板或樑結構的各項彈性常數值為變數,再求取有限制條件下,目標函數的總域極小值,藉搜尋不同路徑以識別出複合材料積層板及樑結構的各項彈性常數值,數值最佳化的方法中,其設計變數是以隨機多起始點同時搜尋的方法將其運用在數值最佳化中,隨機多起始點同時搜尋的方法是利用可變區間內各獨立變數以隨機取樣的方法找出各獨立變數的起始點,以此方式同時做為搜尋軌跡的開始,以找到目標函數之區域極小值。上述是利用擴增拉格蘭吉乘子法,來得到一個無限制條件的新目標函數,再結合多起始點軌跡搜尋法及貝氏逼近法和貝氏論點以及總域極小值之數值最佳化演算法,找到誤差函數之極小值,便可精確而且迅速識別出複合材料積層結構的各項彈性常數。
第二部份是研究兩階段識別法來識別當複合材料積層板或樑結構,只有軸向應變及橫向應變值時,則必需使用兩階段式識別法來複合材料積層板或樑結構之彈性常數識別法,依前述之方法先以應變規及其量測儀器來量測�b45°對稱堆疊的複合材料積層板或樑結構的軸向應變及橫向應變值,做第一階段之複合材料積層板或樑結構之彈性常數識別,再固定其所識別出之剪力模數G12及蒲松比��12,然後再量測�b�牶X (非�b45°) 對稱堆疊的複合材料積層板或樑結構的軸向應變及橫向應變值,做第二階段之複合材料積層板或樑結構之彈性常數識別,而識別出複合材料積層板或樑結構之彈性常數E1及E2。
本文將以Graphite/epoxy (Gr/ep)及Glass/epoxy (Gl/ep)為材料,分別以不同之堆疊方式為例子,來證實本方法之可行性及精確性,再以Gr/ep之複合材料做實驗來驗證之。
A simple yet effective nondestructive evaluation technique for determining four elastic constants of symmetric angle-ply plates/beams is presented. For elastic constants identification of composite materials, using three measured strains of a single angle-ply laminate subjected to tensile testing, or three strains measured in, respectively, axial, lateral, and 45 degree directions from a symmetric angle-ply composite beam subjected to three-point bending testing are used to identify the elastic constants of the material. In the proposed method, the trial material constants of the angle-ply laminate/beam are used in the laminate/beam analysis to predict the strains in the laminate/beam. An error function is established to measure the difference between the experimental and theoretical predictions of the strains. The identification of material constants is then formulated as a constrained minimization problem in which the material constants are determined to make the error function a global minimum. The accuracy and capability of the proposed method are demonstrated by means of a number of examples on the material constants identification of angle-ply laminates with different layups. The accuracy of the proposed technique is studied by means of a number of examples on the elastic constants identification of graphite/epoxy (Gr/ep) or glass/epoxy (Gl/ep) symmetric angle-ply beams. The excellent results obtained in this study have demonstrated the feasibility and applications of the proposed technique.
In this thesis, a two-level optimization method for elastic constants identification of symmetric angle-ply laminates/beams is also presented. Measured axial and lateral strains of two symmetric angle-ply laminates/beams with different fiber angles are used in the proposed method to identify four elastic constants of the composite material. In the first-level optimization process, the theoretically and experimentally predicted axial and lateral strains of a [(45°/-45°)2]s laminate are used to construct the error function which is a measure of the differences between the experimental and theoretical predictions of the axial and lateral strains. In the second-level optimization process, the shear modulus and Poisson’s ratio determined in the previous level of optimization are kept constant while the Young’s moduli of the second angle-ply laminate with fiber angles other than 45° are identified using the same minimization technique that has been used in the previous level. The accuracy of the proposed method are studied by means of a number of examples on the material constants identification of symmetric angle-ply laminates/beams made of different composite materials.
目 錄

中文摘要……………………………………………………… i
英文摘要……………………………………………………… iii
誌謝…………………………………………………………… vi
目錄……………………………………………………………… viii
表目錄…………………………………………………………… xii
圖目錄………………………………………………………… xviii
符號說明……………………………………………………… xxi
第一章  緒論…………………………………………………… 1
1.1 研究動機…………………………………… 1
1.2 研究背景與文獻回顧……………………… 2
1.3 研究方法…………………………………… 4
1.4 數值模擬分析……………………………… 9
1.5 實驗驗證…………………………………… 11
第二章 複合材料積層結構之力學理論……………………… 14
2.1 複材結構之力學理論……………….………… 15
2.2 有限元素法分析……………………………… 27
第三章 複合材料積層板及樑結構之彈性常數識別…………... 33
3.1 數值最佳化理論…………………………… 35
3.1.1 隨機多起始點搜尋的方法………………… 36
3.1.2 區域極小值的尋找方法…………………… 37
3.1.3 總域極小值之判別方法…………………… 41
3.1.4 擴增拉格蘭吉乘子法……………………… 42
3.2 複材積層板及樑結構之彈性常數識別… 45
3.2.1 複合材料積層樑或板結構的彈性常數單一階
段識別法………………………………………45
3.2.2 複合材料積層板或樑結構的兩階段彈性常數識
別法……………………………………49
3.3 靈敏度分析………………………………… 56
第四章 實驗設計說明………………………………………… 59
4.1 試片製作………………………………… 60
4.2 標準試片之材料的彈性常數量測………… 60
4.3 應變規組…………………………………… 61
4.4 拉伸試驗機………………………………… 64
4.5 單一段識別法之應變量測………………… 64
4.5.1 複合材料積層板結構受軸向負載之應變量
測……………………………………………65
4.5.2 複合材料積層樑結構之三點彎曲試驗與應變量
測………………………………68
4.6 兩階段識別法之應變量測………………… 71
4.6.1 複合材料積層板結構之應變量測………… 71
4.6.2 複合材料積層樑結構之應變量測………… 74
第五章 結果與討論………………………………………… 77
5.1 複合材料積層板及樑結構之單一階段識別法. 77
5.1.1 複合材料積層板結構之數值模擬………… 78
5.1.2 複合材料積層板結構單一階段識別法之實驗驗
證………………………………………83
5.1.3 複合材料積層樑結構單一階段識別法…… 87
5.1.4 複合材料積層樑結構單一階段識別法之實驗結
果………………………………………91
5.2 複合材料積層板及樑結構之兩段式識別法 94
5.2.1 複合材料積層板結構兩階段識別法之數值模
擬…………………………………………95
5.2.2 複合材料積層板結構兩階段識別法之實際實
驗…………………………………………101
5.2.3 複合材料積層樑結構兩階段識別法之數值模
擬…………………………………………104
5.2.4 複合材料積層樑結構兩階段識別法之實驗結
果…………………………………………109
第六章 結論與未來發展方向……………………………… 113
6.1 結論………………………………………… 113
6.2 未來發展方向……………………………… 117
參考文獻……………………………………………………… 118
附錄.程式流程圖…………………………………………… 128
1. R. M. Jones, 1975, “Mechanics of Composite Materials”, McGraw-Hill book company.
2. S. W. Tsai, H. T. Hahn, 1980, “Introduction to Composite Materials”, Techomic publishing Co., Inc.
3. J. R. Vinson, R. L. Sierakowski, 1986, “The Behavior of Structures Composed of Composite Materials”, Martinus Nijhoff publishers.
4. S. R. Swanson, 1997, “Introduction to Design and Analysis with Advanced Composite Materials”, Prentice-Hall International, Inc.
5. J. A. Snyman, L. P. Fatti , 1987, “A Multi-Start Global Minimization Algorithm with Dynamic Search Trajectories”, Journal of Optimization Theory and Applications, 54(1), pp. 121-141.
6. T. Y. Kam, J. A. Snyman , 1991, “Optimal Design of Laminated Composite Structures Using a Global Optimization Technique”, Journal of Composite Structures, 19, pp. 351-370.
7. 朱高弘, 1992, “受挫屈複合材料板之最佳設計”,國立交通大學機械工程研究所碩士論文。
8. 陳大智, 1992, “複合材料板之多層次最佳設計”,國立交通大學機械工程研究所碩士論文。
9. 賴峰民, 1993, “複合材料積層板設計及製造”, 國立交通大學機械工程研究所碩士論文.
10. 廖紹助, 1994, “複合材料積層板之輕量設計”,國立交通大學機械工程研究所碩士論文。
11. 賴峰民, 1997, “複合材料結構首層破壞之最佳化設計” ,國立交通大學機械工程研究所博士論文.
12. 林志宏, 1999, “複合材料彈性常數之識別”,國立交通大學機械工程研究所碩士論文。
13. 王文庭, 2000, “複合材料結構彈性常數識別” ,國立交通大學機械工程研究所博士論文.
14. G. N. Vanderplaats, 1984, “Numerical Optimization Techniques for Engineering Design with Applications”, McGraw Hill Inc., New York.
15. 李清榮, 2006, “彈性支撐複合材料板結構系統參數之識別” ,國立交通大學機械工程研究所博士論文.
16. E. M. Salchenberger Cinar, N. A. Lash, 1992, “Neural Networks: A New Tool for Predicting Thrift Failures,” Decision Sciences, 23, pp. 889-916.
17. R. S. Sexton, N. D. Jatinder, Gupta, 2000, “Comparative Evaluation of Genetic Algorithm and Backpropagation for Training Neural Networks”, Information Sciences, 129, pp. 45-59.
18. R. S. Sexton, R. E. Dorsey, J. D. Johnson, 1998, “Toward Global Optimization of Neural Networks: A Comparison of the Genetic Algorithm and Backrogation”, Decision Support System, 22, pp. 171-186.
19. C. C. Huang, Y. F. Huang, 1991, “Bounds on the Numbers of Hidden Neuron in Multiplayer Perceptions”, IEEE Trans. Neural Networks, 2(1), pp. 47-55.
20. C. Y. Lin, C. Fleury, 1992, “Genetic Algorithms in Optimization Problems with Discrete and Integer Design Variables”, Engineering Optimization, 19, pp. 309-327.
21. D. E. Goldberg, C. H. Kuo, 1987, “Genetic Algorithms in Pipeline Optimization”, Journal of Computing in Civil Engineering, 1, pp. 128-141.
22. T. Y. Kam, T. Y. Lee, 1994, “Crack Size Identification Using an Expanded Mode Method”, International Journal of Solids and Structures, 31, pp. 925-940.
23. T. Y. Lee, T. Y. Kam, 1993, “Detection of Crack Location via a Global Minimization Approach”, International Journal of Engineering Optimization, 21, pp. 147-159.
24. T. Y. Kam, T. Y. Lee, 1992, “Detection of Cracks from Modal Test Data”, International Journal of Engineering Fracture Mechanics, 42 (2), pp. 381-387.
25. T. Y. Kam, T. Y. Lee, 1994, “Identification of Crack Size via an Energy Approach”, International Journal of Nondestructive Evaluation, 13(1), pp. 1-11.
26. T. Y. Kam, F. M. Lai, and T. M. Chao, 1999, “Optimum Design of Foam-Filled Laminated Composite Sandwich Plates”, International Journal of Solids & Structures, 36(19), pp. 2865-2889.
27. T. Y. Kam, F. M. Lai, 1999, “Experimental and theoretical predictions of first-ply failure strength of laminated composite plates”, International Journal of Solids and Structures, 36(16), 2379-2395.
28. T. Y. Kam, F. M. Lai, S. C. Liao, 1996, “Minimum Weight Design of Laminated Composite Plates Subject to Strength Constraint”, Journal of AIAA , 34(8), pp.1699-1708.
29. T. Y. Kam, F. M. Lai, 1995, “Design of Laminated Composite Plates for Optimal Dynamic Characteristics Using a Constrained Global Optimization Technique”, International Journal of Computer Methods in Applied Mechanics & Engineering, 120, pp. 389-402.
30. T. Y. Kam, F. M. Lai, H. F. Sher, 1995, “Optimal Parameters for Curing Gr/Ep Composite Laminates”, International Journal of Materials Processing Technology, 48, pp. 357-363.
31. T. Y. Kam, F. M. Lai, 1995, “Maximum Stiffness Design of Laminated Composite Plates via a Constrained Global Optimization Approach”, International Journal of Composite Structures, 32(1) 391-398.
32. T. Y. Kam, M. D. Lai, 1989, “Multilevel Optimal Design of Laminated Composite Plate Structures”, Computers and Structures, 31(2), pp. 197-202.
33. T. Y. Kam, C. K. Liu, 1998, “Stiffness identification of laminated composite shafts”, International Journal of Mechanical Sciences, 4(9),927-936.
34. W. T. Wang, T. Y. Kam, 2001, “Elastic constants identification of shear deformable laminated composite plates”, ASCE, Journal of Engineering Mechanics, 127(11), pp. 1117-1123.
35. W. T. Wang, T. Y. Kam, 2000, “Material characterization of laminated composite plates via static testing”, International Journal of Composite Structures, 50(4), pp. 347-352.
36. T. Y. Kam, C. H. Lin, W. T. Wang, 2000, “Identification of material constants of composite laminated pressure vessels using measured strains”, ASME, Journal of Engineering Materials and Technology, 122(4), pp. 425-427.
37. S. V. Hoa, S. Z. Sheng, P. Ouellette, 2003, “Determination of elastic proerties of triax composite materials”, Composites Science and Technology, 63, pp.437-443.
38. A. K. Bledzki, A. Kessler, R. Rikards, A. Chate, 1999, “Determination of elastic constants of glass/epoxy unidirectional laminates by the vibration testing of plates”, Composites Science and Technology, 59, pp. 2015-2024.
39. J. C. Marín, J. Cañas, F. París, J. Morton, 2002, “Determination of G12 by means of the off-axis tension test. Part І: review of gripping systems and correction factors”, Composites: Part A (33), pp. 87-100.
40. J. C. Marín, J. Cañas, F. París, J. Morton, 2002, “Determination of G12 by means of the off-axis tension test. Part II: a self-consistent approach to the application of correction factors”, Composites: Part A, 33, pp. 101-111.
41. M. J. Pindera, C. T. Herakovich, 1986, “Shear characterization of unidirectional composites with the off-axis tension test”, Experimental Mechanics, pp. 103-112.
42. N. J. Pagano, J. C. Halpin, 1968, “Influence of end constraint in the testing of anisotropic bodies”, Journal of Composite Mechanicals, 2(1), pp. 18-31.
43. C. T. Sun, I. Chung, 1993, “An oblique end-tab design for testing off-axis composite specimens”, Composites, 24(8), pp. 619-623.
44. M. Grédiac, E. Toussaint, F. Pierron, 2002, “Special virtual fields for the direct determination of material parameters with the virtual fields method. 1 – Principle and definition”, International Journal of Solids and Structures, 39, pp. 2691-2705.
45. M. Grédiac, E. Toussaint, F. Pierron, 2002, “Special virtual fields for the direct determination of material parameters with the virtual fields method. 2 – Application to in-plane properties”, International Journal of Solids and Structures, 39, pp. 2707-2730.
46. M. Grédiac, E. Toussaint, F. Pierron, 2003, “Special virtual fields for the direct determination of material parameters with the virtual fields method. 3- Application to the bending rigidities of anisotropic plates”, International Journal of Solids and Structures, 40, pp. 2401-2419.
47. S. F. Hwang, C. S. Chang, 2000, “Determination of elastic constants of materials by vibration testing”, Composite Structures, 49, pp. 183-190.
48. L. Marin, L. Elliott, D. B. Ingham, D. Lesnic, 2004, “parameter identification in isotropic linear elasticity using the boundary element methob”, Endineering Analysis with Boundary Element, pp. 221-233.
49. K. Genovese, L. Llamberti and C. Pappalettere, 2004, “A new hybrid technique for in-plane characterization of orthotropic materials”, Society for Experimental Mechanics, pp. 58-592
50. L. R. Deobald, R. F. Gibson, 1988, “Determination of elastic constants of orthotropic plates by a model analysis/Rayleigh-Ritz technique”, Journal of Sound and Vibration, pp. 269-283
51. P. S. Frederiksen, 1997, “Experimental procedure and results for the identification of elastic constants of thick orthotropic plates”, journal of composite materials, 31(4), pp. 360-382.
52. F. Moussu, M. Nivoit, 1993, “Determination of elastic constants of orthotropic plates by a modal analysis/method of superposition”, Journal of Sound and Vibration, pp. 149-163.
53. K. E. Fallstrom, 1991, “Determining material properties in anisotropic plates using Rayleigh’s method”, Polymer Composites, pp. 360-314.
54. M. Taktak, F. Dammak, S. Abid, M. Haddar, 2005, “A mixed-hybrid finite element for three-dimensional isotropic helical beam analysis”, International Journal of Mechanical Sciences, 47, pp. 209-229
55. C. M. Mota Soares, M. Moreira de Freitas, A. L. Araújo and P. Pederson, 1993, “Identification of material properties of composite plate specimens”, Composite Structures, 25, pp. 277-285.
56. H. Sol, H. Hua, J. De Visscher, J. Vantomme and W. P. De Wilde, 1997, “A mixed numerical/experimental technique for the nondestructive identification of the stiffness properties of fibre reinforced composite materials”, NDT & E International, 30(2), pp. 85-91.
57. W. P. Wilde, H. Sol, 1987, “Anisotropic material identification using measured resonant frequencies of rectangular composite plates”, Composite Structures, 4(2), pp.2317-2324.
58. R. Rikards, A. Chate, W. Steinchen, A. Kessler, A. K. Bledzki, 1999, “Method for identification of elastic properties of laminates based on experiment design”, Composites, 30B, pp. 279-289.
59. K. H. Ip, P. C. Tse, T. C. Lai, 1998, “Material characterization for orthotropic shells using modal analysis and Rayleigh-Ritz models”, Composites, 29B, pp. 397-409.
60. A. L. Araújo, C. M. Mota Soares, M. Moreira de Freitas, 1996, “Characterization of material parameters of composite plate specimens using optimization and experimental vibrational data”, Composites, 27B, pp. 185-191.
61. ASTM, 1990, “Standards and Literature References for Composite Materials”, 2nd Ed., West Conshohocken, Pa.
62. E. C. Cojocaru, H. Irschik, H. Gattringer, 2004, “Dynamic response of an elastic bridge due to a moving elastic beam”, Composite and Structures, 82, pp. 931-934.
63. A. B. Lipen, A. V. Chigarev, 1998, “The displacements in an elastic half-space when a load moves along a beam lying on its surface”, Journal Appl. Maths Mechs,62(5), pp.791-796.
64. H. S. Zibdeh, R. Rackwitz, “Response moments of an elastic beam subjected to poissonian moving loads”, Journal of Sound and Vibration, 188(4), pp.479-495.
65. B. Nadler, M. B. Rubin, 2003, “Determination of hourglass coefficients in the theory of a Cosserat point for nonlinear elastic beams”, International Journal of Solids and Structures, 40, pp. 6163-6188.
66. IMSL, 1994, “User’s manual”, Version 3.0, IMSL Inc.
67. S. W. Tsai, 1987, “Composite design”, Think Composites, Dayton.
68. F. Mujika, A. Valea, P. Ganan, I. Mondragon, 2005, “Off-axis flexure test: A new method for obtaining in-plane shear properties”, Journal of Composite Material, pp. 953-980.
69. F. Mujika, L. Berglund, J. Varna, I. Mondragon, 2002, “45∘flexure test for measurement of in-plane shear modulus”, Journal of Composite Material, 36, pp. 2313-2338.
70. F. Mujika, I. Mondragon, 2003, “On the displacement field for unidirectional off-axis composites in 3 point flexure. Part 1: analytical approach”, Journal of Composite Material, 37, pp.1041-1066.
71. F. Mujika, A. de Benito, I. Mondragon, 2003, “On the displacement field for unidirectional off-axis composites in 3 point flexure. Part 2: numerical and experimental results”, Journal of Composite Material, 37, pp. 1191-1217.
72. R. J. Benjamin, C. A. Cornell, 1970, “Probability, statistics, and decision for civil engineers”, McGraw-Hill, New York.
73. T. K. Hwang, C. S. Hong, C. G. Kim, 2003, “Probabilistic deformation and strength prediction for a filament wound pressure vessel”, composites: Part B 34, pp. 481-497.
74. M. Drechsler, 1998, “Sensitivity analysis of complex models”, Biological Conservation, 86, pp. 401-412.
75. A. Chan, X. L. Liu, W. K. Chiu, 2004, “Sensitivity analysis of potential tests for determining the interlaminar shear modulus of fibre reinforced composites”, Composite Structures, 66, pp. 109-114.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top