跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁達嵐
研究生(外文):Da-Lan Liang
論文名稱:改良式SIMA法製備鎂合金半固態成形胚料之研究
論文名稱(外文):Study on the manufacturing semi-solid billets by modified Strain-Induced Melt-Activated process
指導教授:徐瑞坤
指導教授(外文):Ray-Quen Hsu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:82
中文關鍵詞:鎂合金應變導引熔漿活化法等徑轉角擠製
外文關鍵詞:magnesiumSIMAECAE
相關次數:
  • 被引用被引用:13
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
半固態製程是一種在半固態溫度區間下進行金屬加工的近淨形製程,其相較於固態下的鍛造加工具有較低的變形抵抗,而相較於液態下的壓鑄加工,成品會具有較佳的機械性質。目前要將半固態製程應用在鎂合金上,最大的問題就在於如何製備具有球狀晶粒而非枝狀的胚料。回顧過去的文獻,應變導引熔漿活化法(SIMA)是一種適用於高固相率且製程成本較低的胚料製備方法,但傳統的SIMA製程是利用壓縮的方法來給予材料應變,鎂合金因為在室溫下的滑移系統限制,當壓縮率超過15%時,材料即會產生裂開的現象,而無法施加更大的應變量。
為了克服鎂合金應用在SIMA時的困難,本研究提出一種改良式的SIMA法,將傳統應用在晶粒細化上的大量塑性變形法(SPD),應用在SIMA法的冷加工段上。本研究中所選用的大量塑性變形法為等徑轉角擠製(ECAE),原理是利用兩個交角為90°的等徑模具,利用沖頭下壓將材料擠過90°轉角,藉此施予材料應變。此方法的優點在於擠製前後材料的截面積不變,故可重覆多次擠製,透過控制擠製道次可調整材料的顯微結構及機械性質。
本研究以AZ61、AZ80鎂合金為對象,配合改良式SIMA法,利用ECAE施予材料大量應變,再重新升溫至半固態溫度區間,觀察其顯微組織。實驗結果顯示此法相較於傳統SIMA法,兩種材料在室溫下均可得到較細化的晶粒,但在半固態溫度下的顯微結構顯示,AZ61可得到較佳的球狀晶粒結構,AZ80則效果不彰。根據這樣的結果,可證明改良式SIMA法應用在AZ61鎂合金半固態胚料製備上,的確具有實用上的價值。
Semi-solid processing is one of the most widely used methods for forming magnesium alloy components because of its low resistance to deform comparing to solid alloy forging. Semi-solid process produces components with high mechanical properties of formed comparing to liquid alloy die casting. Semi-solid processing is defined as a forming process in which semi-solid billets with a spheroidal microstructure are formed to produce a near net shaped product at the semi-solid temperature. For semi-solid processing of magnesium alloy, the most important thing is to prepare semi-solid billets, which have spheroidal microstructure. Comparing with other methods for preparing semi-solid billets, strain-induced and melt-activated (SIMA) is simple and cheap, especially for magnesium with high solid fraction. In "traditional SIMA method", the billet is first upsetted then is isothermal treated in semi-solid temperature in order to obtain spheroidal grains. However, for upsetting process of magnesium alloy, plastic deformation is limited due to its limited slip system. If the deformation percentage of magnesium alloy is above 20%, crack will occur.

In order to overcome the difficulties of plastic deformation of magnesium alloys in die upset, a modified method for obtaining severe plastic deformation (SPD) was adopted. Equal channel angular extrusion (ECAE) is a promising technique for obtaining ultra-fine grain materials with increased strength and ductility. During ECAE, a billet is pressed through a die that consists of two channels with equal cross-section, intersecting at an angle. Since the cross-sectional shape of billet remains nearly the same, ECAE processing can be repeated for many passes to control the microstructure and properties of the material.

In this study, is to represent an attempt to prepare semi-solid billets of AZ61 and AZ80 magnesium alloys were selected as the billets. Experiment results indicate that modified SIMA method is very effective for preparing spheroidal grain AZ61, however, for AZ80 the effect was not so obvious. Based on the results, we can conclude that when SIMA method was incorporated with ECAE for preparing AZ61 semi-solid billet a fine dispersed spheroidal grain micro-structure can be obtained.
目錄
頁次
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 vii

一 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
二 鎂合金與半固態成形 6
2.1 鎂合金簡介 6
2.1.1 鎂合金的命名方式 6
2.1.2 添加合金元素對鎂合金之影響 6
2.1.3 鎂合金的優點 8
2.2 半固態成形加工 9
2.2.1 半固態成形原理 9
2.2.2 半固態材料之特性 11
2.2.3 半固態胚料之製造 14
2.2.4 半固態成形技術之類型 18
2.3 應變導引熔漿活化法(SIMA法) 20
2.3.1 製程原理 20
2.3.2 大量塑性變形法 21
2.3.3 結合大量塑性變形法與SIMA法 24
三 實驗方法與流程 38
3.1 製備半固態胚料原理 38
3.2 實驗材料 39
3.3 實驗設備 39
3.4 實驗步驟 40
3.4.1 保護氣體 42
3.4.2 金相觀察流程 43
四 實驗結果與討論 51
4.1 冷作加工量對晶粒組織的影響 52
4.2 半固態溫度下之晶粒組織變化 53
五 結論與未來展望 78
5.1 結論 78
5.2 未來展望 79
參考文獻 80
參考文獻

[1] 邱垂泓,楊智超,「鎂合金成型技術之發展趨勢」,工業材料雜誌,174期,pp.84-88,90年6月。
[2] 陳彥彰,「AZ91D鎂合金經應變導引熔漿活化法(SIMA)之顯微結構研究」,國立交通大學,碩士論文,民國91年。
[3] D. B. Spencer, R. Mehrabian and M. C. Flemings, “Rheological behavior of Sn-15% Pb in the crystallization range”, Metallurgical Transaction, vol. 3, pp.1925-1932, 1972.
[4] H. Proffit, ”Magnesium and Magnesium Alloys”, ASM Handbook 9th edition, Vol. 2, ASM International, 1989.
[5] C. H. Caceres, C. J. Davidson, J. R. Griffiths, C. L. Newton, “Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy”, Materials Science and Engineering, A325, pp.344-355, 2002.
[6] C. Shaw and H. Jones, “The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys”, Materials Science and Engineering, A226-228, pp. 856-860, 1997.
[7] 小島陽等編著,сヲбЁヨу技術便覽,ロ①З出版株式會社,日本,2000。
[8] E. Cerri, M. Cabibbo and E. Evangelista, “Microstructural evolution during high-temperature exposure in a thixocast magnesium alloy”, Materials Science and Engineering, A333, pp.208-217, 2002.
[9] 陳信宏,「鎂合金薄板沖壓成型性之研究」,國立台灣大學,碩士論文,民國91年。
[10] M. P. Kenney, et al., “Semisolid Metal Casting and Forging”, Metals Handbook, 9th edition, vol. 15, ASM, 1988.
[11] P. A. Joly, R. Mehrabian, “The rheology of a partially solid alloy”, Journal of Materials Science, vol. 11, pp.1393-1418, 1976.
[12] M. C. Flemings, R. G. Riek, K. P. Young, “Rheocasting”, Materials Science and Engineering, 25, pp.103-117, 1976.
[13] M. C. Flemings, “Behavior of metal Alloys in the semisolid state”, Metallurgical Transactions A, vol. 22A, pp.957-981, 1991.
[14] D. H. Kirkwood, “Semisolid metal processing”, International Materials Reviews, vol. 39, pp.173-189, 1994.
[15] J. C. Gebelin, M. Suery, D. Favier, “Characterisation of the rheological behaviour in the semi-solid state of grain-refined AZ91 magnesium alloys”, Materials Science and Engineering, A272, pp.134-144, 1999.
[16] A. R. A. Mclelland, et al., “Anomalous rheological behavior of semi-solid alloys slurries at low shear rates”, Materials Science and Engineering, A232, pp.110-118, 1997.
[17] 木內學,「半熔融•半凝固加工21世紀展望」,塑性シ加工,vol. 35,1994。
[18] 陳俊沐,「金屬半固態成形技術發展現況與趨勢」,工業材料雜誌,198期,p.102-113,92年6月。
[19] K. P. Young, et al., “Fine grained metal composition”, United States Patent 4415374.
[20] G. Neite, et al., Materials Science and Technology, Vol. 8 VCH (1996), pp.113.
[21] J. A. Chapman, D. V. Wilson, J. Inst. Metals, 91 (1962-63), pp.35.
[22] R. Z. Valiev,R. K. Islamgaliev and I. V. Alexandrov, ”Bulk nanostructured materials from severe plastic deforemation”, Progress in Materials Science, 45, pp.103-189, 2000.
[23] A. Korbel, M. Richert, “Formation of shear bands during cyclic deformation of aluminum”, Acta Metall., vol.33, pp.1971-1978, 1985.
[24] M. Mabuchi, K. Kubota, K. Higashi, Mater. Trans. JIM, vol. 36, pp.1249, 1995.
[25] R. B. Schwarz, W. L. Johnson, Phys. Rev. Lett., vol.51, pp.415, 1983.
[26] J. Y. Huang, Y. T. Zhu, T. C. Lowe, Acta Mater., vol.49, pp.1497, 2001.
[27] I. Saunders, J. Nutting, “Deformation of metals to high strains using combination of torsion and compression”, Metal Science, vol.18, pp.571-575, 1984.
[28] U. Andrade, M. A. Meyers, K. S. Vecchio, A. H. Chokshi, “Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper”, Acta Metall. Mater., vol.42, pp.3183-3195, 1994.
[29] V. M. Segal, “Materials processing by simple shear”, Mater. Sci. and Eng., A197, pp.157, 1995.
[30] Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, “The process of grain refinement in equal-channel angular pressing”, Acta Mater., vol.46, pp.3317-3331, 1998.
[31] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, ”The shearing characteristics associated with equal-channel angular pressing”, Materials Science and Engineering: A, vol.257, pp.328-332, 1998.
[32] J. Jiang, S. Luo, “Microstructure evolution of AZ91D magnesium alloy semi-solid billets prepared by a new SIMA method”, Solid State Phenomena, vol. 116-117, pp.132-135, 2006.
[33] Y. B. Song, K. T. Park, C. P. Hong, “Recrystallization behavior of 7175 Al alloy during modified strain-induced melt-activated (SIMA) Process”, Materials Transactions, vol. 47, pp.1250-1256, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top