參考文獻
[1] 邱垂泓,楊智超,「鎂合金成型技術之發展趨勢」,工業材料雜誌,174期,pp.84-88,90年6月。[2] 陳彥彰,「AZ91D鎂合金經應變導引熔漿活化法(SIMA)之顯微結構研究」,國立交通大學,碩士論文,民國91年。[3] D. B. Spencer, R. Mehrabian and M. C. Flemings, “Rheological behavior of Sn-15% Pb in the crystallization range”, Metallurgical Transaction, vol. 3, pp.1925-1932, 1972.
[4] H. Proffit, ”Magnesium and Magnesium Alloys”, ASM Handbook 9th edition, Vol. 2, ASM International, 1989.
[5] C. H. Caceres, C. J. Davidson, J. R. Griffiths, C. L. Newton, “Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy”, Materials Science and Engineering, A325, pp.344-355, 2002.
[6] C. Shaw and H. Jones, “The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys”, Materials Science and Engineering, A226-228, pp. 856-860, 1997.
[7] 小島陽等編著,сヲбЁヨу技術便覽,ロ①З出版株式會社,日本,2000。
[8] E. Cerri, M. Cabibbo and E. Evangelista, “Microstructural evolution during high-temperature exposure in a thixocast magnesium alloy”, Materials Science and Engineering, A333, pp.208-217, 2002.
[9] 陳信宏,「鎂合金薄板沖壓成型性之研究」,國立台灣大學,碩士論文,民國91年。[10] M. P. Kenney, et al., “Semisolid Metal Casting and Forging”, Metals Handbook, 9th edition, vol. 15, ASM, 1988.
[11] P. A. Joly, R. Mehrabian, “The rheology of a partially solid alloy”, Journal of Materials Science, vol. 11, pp.1393-1418, 1976.
[12] M. C. Flemings, R. G. Riek, K. P. Young, “Rheocasting”, Materials Science and Engineering, 25, pp.103-117, 1976.
[13] M. C. Flemings, “Behavior of metal Alloys in the semisolid state”, Metallurgical Transactions A, vol. 22A, pp.957-981, 1991.
[14] D. H. Kirkwood, “Semisolid metal processing”, International Materials Reviews, vol. 39, pp.173-189, 1994.
[15] J. C. Gebelin, M. Suery, D. Favier, “Characterisation of the rheological behaviour in the semi-solid state of grain-refined AZ91 magnesium alloys”, Materials Science and Engineering, A272, pp.134-144, 1999.
[16] A. R. A. Mclelland, et al., “Anomalous rheological behavior of semi-solid alloys slurries at low shear rates”, Materials Science and Engineering, A232, pp.110-118, 1997.
[17] 木內學,「半熔融•半凝固加工21世紀展望」,塑性シ加工,vol. 35,1994。
[18] 陳俊沐,「金屬半固態成形技術發展現況與趨勢」,工業材料雜誌,198期,p.102-113,92年6月。[19] K. P. Young, et al., “Fine grained metal composition”, United States Patent 4415374.
[20] G. Neite, et al., Materials Science and Technology, Vol. 8 VCH (1996), pp.113.
[21] J. A. Chapman, D. V. Wilson, J. Inst. Metals, 91 (1962-63), pp.35.
[22] R. Z. Valiev,R. K. Islamgaliev and I. V. Alexandrov, ”Bulk nanostructured materials from severe plastic deforemation”, Progress in Materials Science, 45, pp.103-189, 2000.
[23] A. Korbel, M. Richert, “Formation of shear bands during cyclic deformation of aluminum”, Acta Metall., vol.33, pp.1971-1978, 1985.
[24] M. Mabuchi, K. Kubota, K. Higashi, Mater. Trans. JIM, vol. 36, pp.1249, 1995.
[25] R. B. Schwarz, W. L. Johnson, Phys. Rev. Lett., vol.51, pp.415, 1983.
[26] J. Y. Huang, Y. T. Zhu, T. C. Lowe, Acta Mater., vol.49, pp.1497, 2001.
[27] I. Saunders, J. Nutting, “Deformation of metals to high strains using combination of torsion and compression”, Metal Science, vol.18, pp.571-575, 1984.
[28] U. Andrade, M. A. Meyers, K. S. Vecchio, A. H. Chokshi, “Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper”, Acta Metall. Mater., vol.42, pp.3183-3195, 1994.
[29] V. M. Segal, “Materials processing by simple shear”, Mater. Sci. and Eng., A197, pp.157, 1995.
[30] Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, “The process of grain refinement in equal-channel angular pressing”, Acta Mater., vol.46, pp.3317-3331, 1998.
[31] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, ”The shearing characteristics associated with equal-channel angular pressing”, Materials Science and Engineering: A, vol.257, pp.328-332, 1998.
[32] J. Jiang, S. Luo, “Microstructure evolution of AZ91D magnesium alloy semi-solid billets prepared by a new SIMA method”, Solid State Phenomena, vol. 116-117, pp.132-135, 2006.
[33] Y. B. Song, K. T. Park, C. P. Hong, “Recrystallization behavior of 7175 Al alloy during modified strain-induced melt-activated (SIMA) Process”, Materials Transactions, vol. 47, pp.1250-1256, 2006.