跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 20:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁郁婷
研究生(外文):Yu-Ting Weng
論文名稱:整數階與分數階雙Mackey-Glass系統的渾沌,延遲,超前,非耦合渾沌同步及控制
論文名稱(外文):Chaos, Lag, Anticipated and Uncoupled Chaos Synchronization and Chaos Control of Integral and Fractional Order Double Mackey-Glass Systems
指導教授:戈正銘戈正銘引用關係
指導教授(外文):Zheng-Ming Ge
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:67
中文關鍵詞:渾沌渾沌控制渾沌同步分數階系統
外文關鍵詞:ChaosChaos controlChaos synchronizationFractional order system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文以相圖及分歧圖等數值方法來研究雙Mackey-Glass系統的整數階與分數階的渾沌行為。同時發現了當兩個非耦合的雙Mackey-Glass系統其初始値有些微差異時,即使沒有加入控制項,此兩系統可達到暫態延遲或超前同步及暫態延遲或超前反同步,當所有初始値為正時,可獲得暫態延遲或超前同步,但當初始値有負值存在時,系統軌跡會產生對x軸對稱的倒轉現象,即獲得暫態延遲或超前反同步,上述的延遲或超前同步會交替出現。接著利用參數激發法來控制雙Mackey-Glass系統,使系統能在零點漸近穩定,並使兩個非耦合的雙Mackey-Glass系統達到同步與延遲同步。此法是將系統中相對應的參數以噪訊取代,本文利用高斯噪訊、Rayleigh噪訊、Rician噪訊及均勻噪訊並調整其噪訊之強度,可消除雙Mackey-Glass系統的渾沌特性而在零點穩定,且可使兩個非耦合的雙Mackey-Glass系統達成同步。此外,當此控制法作用於第一系統與第二系統時存在一個時間差,意即第一系統的相對應參數在t=0秒時以噪訊取代,而第二系統之相對應參數在t=d秒時取代,此兩非耦合系統可達延遲同步。同時,暫態延遲與部分延遲同步也可達成。系統在此法作用下對微小擾動具有強健性。
Chaotic behaviors of integral and fractional order double Mackey-Glass time delay systems are studied by phase portraits and bifurcation diagrams. It is discovered that temporary lag and anticipated synchronization and temporary lag and anticipated anti-synchronization appear for two identical double Mackey-Glass systems, without any control scheme or coupling terms, but with different initial conditions. When all initial conditions are positive, the lag (anticipated) synchronization is obtained. The negative initial values make the time history inverse and temporary lag (anticipated) anti-synchronization occurs. The phenomena both appear intermittently. The parameter excited method is applied to control chaos of a double Mackey-Glass system and to synchronize two uncoupled identical double Mackey-Glass systems. By replacing a parameter of the chaotic system by the Gaussian noise, Rayleigh noise, Rician noise and uniform noise signal respectively, chaos control can be obtained. By replacing the corresponding parameters of these two chaotic systems by any of the mentioned noise signal, chaos synchronization can be obtained. Afterward, lag synchronization of two uncoupled double Mackey-Glass systems by parameter excited method is presented. By replacing the corresponding parameters with two lag Rayleigh noise signals, the lag synchronization can be successfully achieved. Temporary lag synchronization, partial lag synchronization and robustness of lag synchronization are also obtained by this method.
ABSRACT....................................................i
ACKNOWLEDGMENT............................................iv
CONTENTS...................................................v
LIST OF TABLES...........................................vii
LIST OF FIGURES.........................................viii
Chapter 1 Introduction....................................1
Chapter 2 Chaos in Integral and Fractional Order Double Mackey-Glass Systems.......................................5
2.1 Chaos in integral order double Mackey-Glass system....5
2.2 Definition and approximation of fractional order operator...................................................6
2.3 The results of numerical simulations for fractional order systems..............................................7
Chapter 3 Temporary Lag and Anticipated Synchronization and Anti-Synchronization of Uncoupled Double Mackey-Glass Systems...................................................19
3.1 Temporary lag and anticipated synchronization and temporary lag and anticipated anti-synchronization of uncoupled time-delayed chaotic systems....................19
3.2 The lag and anticipated synchronization of two identical double Mackey-Glass systems.....................20
3.3 The lag and anticipated anti-synchronization of two identical double Mackey-Glass systems.....................23
Chapter 4 Chaos Control and Synchronization of Double Mackey-Glass System by Noise Excitation of Parameters.....30
4.1 Chaos control and synchronization for uncoupled double Mackey-Glass system by parameter excited method...........30
4.2 Numerical simulations of chaos control...............31
4.2.1 Gaussian noise.....................................31
4.2.2 Rayleigh noise.....................................32
4.2.3 Rician noise.......................................32
4.2.4 Uniform noise......................................33
4.3 Numerical simulations of chaos synchronizations......33
4.3.1 Gaussian noise.....................................34
4.3.2 Rayleigh noise.....................................34
4.3.3 Rician noise.......................................35
4.3.4 Uniform noise......................................36
Chapter 5 Robust Chaos Lag Synchronization of Double Mackey-Glass System by Noise Excitation of Parameters.....46
5.1 Lag synchronization of double Mackey-Glass system by parameter excited method..................................46
5.2 Numerical simulation results of lag synchronizations.47
Chapter 6 Conclusions....................................57
References................................................59
Appendix .................................................67
[1] Xin Gao and Juebang Yu, “Synchronization of two coupled fractional-order chaotic oscillators”, Chaos, Solitons and Fractals Vol. 26; 141-145, 2005.
[2] Zheng-Ming Ge and Ching-I Lee, “Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay”, Chaos, Solitons and Fractals Vol. 23; 1855-1864, 2005.
[3] Zheng-Ming Ge and Yen-Sheng Chen, “Adaptive synchronization of unidirectional and mutual coupled chaotic systems”, Chaos, Solitons and Fractals Vol. 26; 881-888, 2005.
[4] Zheng-Ming Ge and Yen-Sheng Chen, “Synchronization of unidirectional coupled chaotic systems via partial stability”, Chaos, Solitons and Fractals Vol. 21; 101-111, 2004.
[5] Zheng-Ming Ge and Chien-Cheng Chen, “Phase synchronization of coupled chaotic multiple time scales systems”, Chaos, Solitons and Fractals Vol. 20; 639-647, 2004.
[6] Zheng-Ming Ge and Ching-I Lee, “Anticontrol and synchronization of chaos for an autonomous rotational machine system with a hexagonal centrifugal governor”, Journal of Sound and Vibration Vol. 282; 635-648, 2005.
[7] A. Ali pacha, N. Hadj-said, B. Belmeki and A. Belgoraf, “Chaotic behavior for the secrete key of cryptographic system”, Chaos, Solitons and Fractals Vol. 23; 1549-1552, 2005.
[8] Marek Berezowski, “Spatio-temporal chaos in tubular chemical reactors with the recycle of mass”, Chaos, Solitons and Fractals Vol. 11, 1197-1204, 2000.
[9] Dulakshi S.K. Karunasinghe and S.Y. Liong, “Chaotic time series prediction with
a global model: Artificial neural network”, Journal of Hydrology Vol. 323, 92-105, 2006.
[10] G.L. He and S.P. Zhou, “What is the exact condition for fractional integrals and derivatives of Besicovitch functions to have exact box dimension?”, Chaos, Solitons and Fractals Vol. 26; 867-879, 2005.
[11] K. Yao, W.Y. Su and S.P. Zhou, “On the connection between the order of fractional calculus and the dimensions of a fractal function”, Chaos, Solitons and Fractals Vol. 23; 621-629, 2005.
[12] Guy Jumarie, “Fractional master equation: non-standard analysis and Liouville–Riemann derivative”, Chaos, Solitons and Fractals Vol. 12; 2577-87 , 2001.
[13] S.A. Elwakil and M.A. Zahran, “Fractional integral representation of master equation”, Chaos, Solitons and Fractals Vol. 10; 1545-1548, 1999.
[14] R.L. Bagley and R.A. Calico, “Fractional order state equations for the control of viscoelastically damped structures”, J Guid Contr Dyn Vol. 14; 304-311, 1991.
[15] M.G. Paulin, L.F. Hoffman and C. Assad, “Dynamics and the single spike”, IEEE Trans Vol.15; 987-994, 2004.
[16] P. Arena, R. Caponetto, L. Fortuna and D. Porto, “Bifurcation and chaos in noninteger order cellular neural networks”, Int J Bifur Chaos Vol. 7; 1527–1539, 1998.
[17] H.H. Sun, A.A. Abdelwahad and B. Onaral, “Linear Approximation of Transfer Function with a Pole of Fractional Power”, IEEE Trans. Autom. Control Vol. 29; 441-444, 1984.
[18] M. Ichise, Y Nagayanagi and T. Kojima, “An analog simulation of noninteger order transfer functions for analysis of electrode process”, Electroanal J., Chem. Vol. 33; 253, 1971.
[19] O. Heaviside, “Electromagnetic Theory”, Chelsea, New York, 1971.
[20] D. Kusnezov, A. Bulgac and G.D. Dang, “Quantum levy processes and fractional kinetics”, Phys Rev Lett Vol. 82; 1136-1139, 1999.
[21] W. M. Ahmad and J.C. Sprott, “Chaos in fractional-order autonomous nonlinear systems”. Chaos, Solitons and Fractals Vol. 16; 339-351, 2003.
[22] W. M. Ahmad and A. M. Harb, “On nonlinear control design for autonomous chaotic systems of integer and fractional orders”, Chaos, Solitons & Fractals Vol. 18; 693-701, 2003.
[23] T.T. Hartley and C.F. Lorenzo, “Dynamics and control of initialized fractional-order systems”, Nonlinear Dyn Vol. 29; 201-233, 2002.
[24] I. Podlubny, I. Petras, B.M. Vinagre, P. O’Leary. and L’. Dorcak, “Analogue realizations of fractional-order controllers”, Nonlinear Dyn Vol. 29; 281-296, 2002.
[25] Chunguang Li and Guanrong Chen, “Chaos in the fractional order Chen system and its control”. Chaos, Solitons and Fractals Vol. 22; 549-554, 2004.
[26] W. Ahmad, R. El-Khazali and A. S. El-Wakil, “Fractional-order Wien-bridge oscillator”, Electr Lett Vol. 37; 1110-1112, 2001.
[27] I. Grigorenko and E. Grigorenko, “Chaotic dynamics of the fractional Lorenz system”, Phys Rev Lett Vol. 91; 034101, 2003.
[28] J.G. Lu, “Chaotic dynamics and synchronization of fractional-order Arneodo’s systems”. Chaos, Solitons and Fractals Vol. 26; 1125-1133, 2005.
[29] P. Arena, R. Caponetto, L. Fortuna and D. Porto, “Chaos in a fractional order Duffing system”, In: Proc. ECCTD, Budapest 1259-1262, 1997.
[30] Richard Hotzel and Michel Fliess, “On linear systems with a fractional derivation: Introductory theory and examples”, Mathematics and Computer in Simulation Vol. 45; 385-395, 1998.
[31] Edward Ott, Celso Grebogi, and James A. Yorke, “Controlling chaos”, Phys Rev Lett Vol. 64; 1196–1199, 1990.
[32] Jose Alvarez-Ramirez, Ilse Cevantes and Ricardo Femat, “An equilibrium point stabilization strategy for Chen system”, Phys Lett A Vol. 326; 234-242, 2004.
[33] J. L. Kuang, P. A. Meehan and A. Y. T. Leung, “Suppressing chaos via Lyapunov–Krasovskii_s method”, Chaos, Solitons & Fractals Vol. 27; 1408–1414, 2006.
[34] Zheng-Ming Ge, and Ching-I Lee, “Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay”, Chaos, Solitons and Fractals Vol. 23; 1855-1864, 2005.
[35] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems”, Phys. Rev. Lett. Vol. 64; 821–824, 1990.
[36] H.-K. Chen, “Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lü”, Chaos, Solitons and Fractals Vol. 25; 1049-1056, 2005.
[37] H.-K. Chen and T.-N. Lin, “Synchronization of chaotic symmetric gyros by one-way coupling conditions”, ImechE Part C: Journal of Mechanical Engineering Science Vol. 217; 331-340, 2003.
[38] H.-K. Chen, “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping”, Journal of Sound & Vibration Vol. 255; 719-740, 2002.
[39] Z.-M. Ge, T.-C. Yu, and Y.-S. Chen, “Chaos synchronization of a horizontal platform system”, Journal of Sound and Vibration 731-49, 2003.
[40] Z.-M. Ge and T.-N. Lin, “Chaos, chaos control and synchronization of electro-mechanical gyrostat system”, Journal of Sound and Vibration Vol. 259; 585-603, 2003.
[41] Z.-M. Ge, C.-C. Lin and Y.-S. Chen, “Chaos, chaos control and synchronization of vibromrter system”, Journal of Mechanical Engineering Science Vol. 218; 1001-20, 2004.
[42] Awad El-Gohary and Rizk Yassen “Adaptive control and synchronization of a coupled dynamo system with uncertain parameters”, Chaos, Solitons and Fractals Vol. 29; 1085-1094, 2006.
[43] Y. Yang, X.-K Ma and H. Zhang, “Synchronization and parameter identification of high-dimensional discrete chaotic systems via parametric adaptive control”, Chaos, Solitons and Fractals vol. 28; 244-251, 2006.
[44] Z.-M. Ge, P.-C. Tzen and S.-C. Lee, “Parametric analysis and fractal-like basins of attraction by modified interpolates cell mapping”, Journal of Sound and Vibration Vol. 253; 711-723, 2002.
[45] Z.-M. Ge and S.-C. Lee, “Parameter used and accuracies obtain in MICM global analyses”, Journal of Sound and Vibration Vol. 272; 1079-85, 2004.
[46] Z.-M. Ge and W.-Y. Leu, “Chaos synchronization and parameter identification for loudspeaker system”, Chaos, Solitons and Fractals Vol. 21; 1231-47, 2004.
[47] Z.-M. Ge and C.-M. Chang, “Chaos synchronization and parameter identification for single time scale brushless DC motor”, Chaos, Solitons and Fractals Vol. 20; 889-903, 2004.
[48] Z.-M. Ge and J.-K. Lee, “Chaos synchronization and parameter identification for gyroscope system”, Applied Mathematics and Computation, Vol. 63; 667-682, 2004.
[49] Z.-M. Ge and J.-W. Cheng, “Chaos synchronization and parameter identification of three time scales brushless DC motor”, Chaos, Solitons and Fractals Vol. 24; 597-616, 2005.
[50] Z.-M. Ge and Y.-S. Chen, “Adaptive synchronization of unidirectional and mutual coupled chaotic systems”, Chaos, Solitons and Fractals Vol. 26; 881-88, 2005.
[51] D. Edouard, P. Dufour and H. Hammouri, “Observer based multivariable control of a catalytic reverse flow reactor: comparison between LQR and MPC approaches “, Computers and Chemical Engineering Vol. 29; 851-865, 2005.
[52] H.-F. Ho, Y.-K. Wong, A.-B. Rad and W.-L. Lo, “State observer based indirect adaptive fuzzy tracking control”, Simulation Modelling Practice and Theory Vol. 13; 646-63, 2005.
[53] Xunhe Yin, Yong Ren and Xiuming Shan, “Synchronization of discrete spatiotemporal chaos by using variable structure control”, Chaos, Solitons & Fractals Vol. 14; 1077-1082, 2002.
[54] Chun-Chieh Wang and Juhng-Perng Su, “A novel variable structure control scheme for chaotic synchronization”, Chaos, Solitons & Fractals Vol. 2; 275-287, 2003.
[55] E.-W. Bai and K.-E. Lonngren, “Sequential synchronization of two Lorenz systems using active control”, Chaos, Solitons & Fractals Vol. 7; 1041-44, 2000.
[56] Z. Li, C.-Z. Han and S.-J. Shi, “Modification for synchronization of Rossler and Chen chaotic systems”, Phys Lett A Vol. 301; 224-230, 2002.
[57] M.-C. Ho, Y.-C. Hung and C.H. Chou, “Phase and anti-phase synchronization of two chaotic systems by using active control”, Phys Lett A Vol. 296; 43-48, 2002.
[58] M.-T. Yassen, “Chaos synchronization between two different chaotic systems using active control”, Chaos, Solitons & Fractals Vol. 23; 153-158, 2005.
[59] H.-N. Agiza and M.-T. Yassen, “Synchronization of Rossler and Chen chaotic dynamical systems using active control”, Phys Lett A Vol. 278; 191-197,2001.
[60] H.-K. Chen, “Global chaos synchronization of new chaotic systems via nonlinear control”, Chaos, Solitons & Fractals Vol. 4; 1245-51, 2005.
[61] Ju-H. Park, “Chaos synchronization of a chaotic system via nonlinear control”, Chaos, Solitons & Fractals Vol. 23; 153-158, 2005.
[62] L.-L. Huang, R.-P. Feng and M. Wang, “Synchronization of chaotic systems via nonlinear control”, Phys Lett A Vol. 4; 271-75, 2004.
[63] Rong Zhang, Manfeng Hu, Zhenyuan Xu, “Impulsive synchronization of Rössler systems with parameter driven by an external signal” Physics Letters A Vol. 364; 239-243, 2007.
[64] Dilan Chen, Jitao Sun and Changshui Huang, “Impulsive control and synchronization of general chaotic system” Chaos, Solitons and Fractals Vol. 28; 213-218, 2006.
[65] Deng Bin, Wang Jiang and Fei Xiangyang, “Synchronizing two coupled chaotic neurons in external electrical stimulation using backstepping control”, Chaos, Solitons and Fractals Vol. 29; 182-189, 2006.
[66] Jianwen Feng, Chen Xu and Jianliang Tang, “Controlling Chen’s chaotic attractor using two different techniques based on parameter identification” Chaos, Solitons and Fractals Vol. 32; 1413-1418, 2007.
[67] Zhigang Li and Daolin Xu, “A secure communication scheme using projective chaos synchronization” Chaos, Solitons and Fractals, Vol. 22; 477-481, 2004.
[68] Chun-Chieh Wang and Juhng-Perng Su, “A new adaptive variable structure control for chaotic synchronization and secure communication” Chaos, Solitons and Fractals, Vol. 20; 967-977, 2004.
[69] Yonghui Sun and Jinde Cao, “Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation”, Chaos, Solitons and Fractals, Vol. 364; 277-285, 2007.
[70] Wei Guo Xu and Qian Shu. Li, “Chemical chaotic schemes derived from NSG system”, Chaos, Solitons and Fractals Vol. 15; 663–71, 2003.
[71] E.M. Shahverdiev, S. Sivaprakasam, and K.A. Shore, “Lag synchronization in time-delayed systems”, Phys Lett A Vol. 292; 320-324, 2002.
[72] Chuandong Li and Xiaofeng Liao, “Lag synchronization of Rossler system and Chua circuit via a scalar signal”, Physics Letters A Vol. 329; 301-308, 2004.
[73] Zheng-Ming Ge and Guo-Hua Lin, “The complete, lag and anticipated synchronization of a BLDCM chaotic system”, Chaos, Solitons and Fractals Vol. 34; 740-764,2007.
[74] Xiang Li, “Phase synchronization in complex networks with decayed long-range interactions”, Physica D Vol. 223; 242-247, 2006
[75] Gang Zhang, Zengrong Liu and Zhongjun Ma, “Generalized synchronization of different dimensional chaotic dynamical systems”, Chaos, Solitons and Fractals Vol. 32; 773-779, 2007.
[76] Guo-Hui Li and Shi-Ping Zhou, “An observer-based anti-synchronization”, Chaos, Solitons and Fractals Vol. 29; 495-498, 2006.
[77] H.-K. Chen and L.-J. Sheu, “The transient ladder synchronization of chaotic systems”, Phys Lett A Vol. 355; 207-211, 2006.
[78] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control systems”, Science 197:287, 1977.
[79] Li Guo-Hui “Synchronization of chaotic systems with parameter driven by chaotic signal”, Chaos, Solitons & Fractals Vol.26;1485-1489, 2006.
[80] Yang C.-M., Niu H.-Y., Tian G., et al., “Synchronizing chaos by driving parameter”, Acta Phys. Sin. 50;619-623, 2001.
[81] A. Charef, H.H. Sun, Y.Y. Tsao and B. Onaral, “Fractal system as represented by singularity function”, IEEE Trans Auto Contr Vol. 37; 1465–1470, 1992.
[82] T.T. Hartley, C.F. Lorenzo and H.K. Qammer, “Chaos in a fractional order Chua’s system”, IEEE Trans CAS-I Vol. 42; 485–490, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊